OFFICE NOTE 284

Skill of Medium Range Forecast Group

Francis D. Hughes
Forecast Division

FEBRUARY 1984

This is an unreviewed manuscript, primarily intended for informal exchange of information among NMC staff members.
This paper depicts in a graphical manner the skill of the Medium Range (3-10 day) Forecast Group (MRFG) man and machine (numerical model guidance) forecasts. It will be updated each February in order to present the latest scores for each of the several forecast categories in the MRFG. Only scores with at least a 5-year period of record are presented. This paper contains the standardized and unstandardized mean sea level pressure and 500-mb correlation; the Gilman, Hughes, and experimental precipitation skill; the minimum/maximum absolute temperature error; and the mean normalized 500-mb correlation, temperature, and precipitation skill scores. Subsequent updates to this note will include the Brier precipitation score. (See COMMENTS pages 105 to 107.)
Numerical Model Guidance (Past to Present)

1. Acronyms
 a. Baro - Reed Barotropic Advection Model Hemispheric
 b. 6L PE - 6-layer Primitive Equation Model Hemispheric
 c. CM - Course Mesh 380km FM - Fine Mesh 190km
 d. SMG26 - Spectral Model Global 24 modes 6-layers
 e. SMH2C - Spectral Model Hemispheric 24 modes 12-layers
 f. SMG3C - Spectral Model Global 30 modes 12-layers
 g. SMG4C - Spectral Model Global 40 modes 12-layers

2. O0Z Guidance
 a. To 84-hours
 (1) From 1970 through 1977: 6L PE CM
 (2) From 1978 through 1979: 7L PE FM
 (3) From January 1980 to August 15, 1980: 7L PE FM to 60-hours then 7L PE CM with Fourth Order Differencing to 84-hours.
 (4) From August 15, 1980, to April 15, 1981: SMG3C to 48-hours then SMH2C to 84-hours.
 (5) From April 15, 1981, through October 19, 1983: SMG3C to 48-hours then SMG2C to 84-hours.
 (6) From October 19, 1983, through December 1983: SMG4C
 b. Greater than 84-hours to 144-hours
 (1) From 1970 through 1979: Baro (Mesh 1977-1979)
 (3) From August 15, 1980 to April 15, 1981: SMH2C
 (4) From April 15, 1981, through April 1982: SMG26
 (5) From May 1982 through October 19, 1983: SMG2C
 (6) From October 19, 1983 through December 1983: SMG4C
 c. Greater than 144-hours to 252 hours
 (1) From November 1977 through April 1981: Baro Mesh
 (2) From December 1977 through April 15, 1981: 3L PE CM
 (3) From April 15, 1981 through October 19, 1983: SMG26 to 192 hours then SMH26 to 240 hours.
 (4) From October 19, 1983 through December 1983: SMG4C to 240 hours.

3. 12Z Guidance
 a. To 60-hours
 (1) From 1970 through 1977: 6L PE CM
 b. Greater than 60-hours to 96-hours (500mb only):
 (1) From 1970 through 1977: Baro (Mesh in 1977)
c. To 48-hours
 (1) From October 1971 through August 1977: 7L PE FM (old LFM)
 (2) From September 1977 through 1983: 7L PE LFM (127km)

d. Greater than 48-hours to 120 hours (500mb only)
 (1) From 1978 through 1983: Baro run from the 48-hour LFM inserted into the 60-hour SMG4C from 00Z.

<table>
<thead>
<tr>
<th>Forecast Day</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>00Z</td>
<td>12Z</td>
<td>12Z</td>
<td>12Z</td>
<td>12Z</td>
<td>12Z</td>
</tr>
<tr>
<td>12hrs</td>
<td>00Z</td>
<td>36hrs</td>
<td>60hrs</td>
<td>84hrs</td>
<td>108hrs</td>
</tr>
<tr>
<td>12Z</td>
<td>00Z</td>
<td>00Z</td>
<td>00Z</td>
<td>00Z</td>
<td>132hrs</td>
</tr>
</tbody>
</table>

Figures

Figure 1 depicts the North American (NA 130 grid points) and the United States (US 86 grid points) subset mean sea level pressure (MSLP) and 500 mb correlation score verification areas.
Figure 2 is a plot of the calendar year 1983 monthly mean standardized correlation scores for the man and NMC/NWP model North American area mean sea level pressure progs verifying on days 3, 4, and 5 after forecast day. (See Appendix A for an explanation of this score.)

Figure 3 is a plot of the 16/14 year (1968/70-1983) average monthly mean standardized correlation scores for the man and NMC/NWP model North American area mean sea level pressure progs verifying on days 3, 4, and 5 after forecast day. (See Appendix A for an explanation of this score.)

Figure 4 is a plot of the 1968/70 through 1983 calendar year standardized correlation scores for the man and NMC/NWP model North American area mean sea level pressure progs verifying on days 3, 4, and 5 after forecast day. (See Appendix A for an explanation of this score.)

Figure 5 is similar to figure 2 except the score is unstandardized.

Figure 6 is similar to figure 3 except the average is for 7 years and the score is unstandardized.

Figure 7 is similar to figure 4 except the calendar years are 1977 through 1983 and the score is unstandardized.

Figure 8 is a plot of the calendar year 1983 monthly mean standardized correlation scores for the NMC/NWP model North American area 500 mb progs verifying on days 3, 4, and 5 after forecast day. (See Appendix A for an explanation of this score.)

Figure 9 is a plot of the 14 year (1970-1983) average monthly mean standardized correlation scores for the NMC/NWP model North American area 500 mb progs verifying on days 3, 4, and 5 after forecast day. (See Appendix A for an explanation of this score.)
Figure 10 is a plot of the 1970 through 1983 calendar year standardized correlation scores for the NMC/NWP model North American area 500 mb progs verifying on days 3, 4, and 5 after forecast day. (See Appendix A for an explanation of this score.)

Figure 11 is similar to figure 2 except the area is the United States.

Figure 12 is similar to figure 3 except the average is for 8 years and the area is the United States.

Figure 13 is similar to figure 4 except the calendar years are 1976 through 1983 and the area is the United States.

Figure 14 is similar to figure 5 except the area is the United States.

Figure 15 is similar to figure 6 except the area is the United States.

Figure 16 is similar to figure 7 except the area is the United States.

Figure 17 is similar to figure 8 except the area is the United States.

Figure 18 is similar to figure 9 except the average is for 9 years and the area is the United States.

Figure 19 is similar to figure 10 except the calendar years are 1975 through 1983 and the area is the United States.

Figure 20 is a plot of the calendar year 1983 monthly mean standardized correlation scores for the man, NMC/NWP model, European Center for Medium Range Weather Forecasting (ECMWF), and Linear Regression (LR—see NMC ON 259 of June 82) North American area 500 mb mean progs verifying 6 to 10 days after forecast day.

Figure 21 is a plot of the 5 year (1979-1983) average monthly mean standardized correlation scores for the man and NMC/NWP model North American area 500 mb mean progs verifying 6 to 10 days after forecast day.
Figure 22 is a plot of the 1979 through 1983 calendar year standardized correlation scores for the man, NMC/NWP model and ECMWF (1982-1983) North American area 500 mb mean progs verifying 6 to 10 days after forecast day.

Figure 23 depicts the 41 stations in the United States where the temperature forecasts are verified.

Figure 24 is a plot of the calendar year 1983 bi-monthly mean absolute error minimum temperature scores for the man, Klein Lewis (KL) objective, and climatology temperature forecasts verifying on days 3, 4, and 5 after forecast day.

Figure 25 is a plot of the 13 year (1971-1983) average bi-monthly mean absolute error minimum temperature scores for the man, KL, and climatology temperature forecasts verifying on days 3, 4, and 5 after forecast day.

Figure 26 is a plot of the 1971 through 1983 calendar year absolute error minimum temperature scores for the man, KL, and climatology temperature forecasts verifying on days 3, 4, and 5 after forecast day.

Figure 27 is similar to figure 24 except the temperature is maximum.

Figure 28 is similar to figure 25 except the temperature is maximum.

Figure 29 is similar to figure 26 except the temperature is maximum.

Figure 30 is a plot of the 1972 through 1983 calendar year absolute error (minimum + maximum)/2 temperature scores for the man, KL, and climatology temperature forecasts verifying on days (3+4+5)/3 after forecast day.

Figure 31 is a plot of the calendar year 1983 monthly mean 5 class temperature skill scores for the man, forecast persistence (FP-persistence of the 1-5 day mean temperature forecast as a 6-10 day), linear regression (LR-see NMC ON 259 of June 82), and observed (T OBS-persistence of the 5 day mean observed temperatures as a 6-10 day forecast) mean temperature forecasts verifying 6 to 10 days after forecast day. (See Appendix B for an explanation of this score.)
Figure 32 is a plot of the 6 year (1978-1983) average monthly mean 5 class temperature skill scores for the man, FP, LR, and T OBS mean temperature forecasts verifying 6 to 10 days after forecast day.

Figure 33 is a plot of the 1978 through 1983 calendar year 5 class temperature skill scores for the man, FP, LR, and T OBS mean temperature forecasts verifying 6 to 10 days after forecast day.

Figure 34 is similar to figure 31 except the temperature skill scores are 3 class.

Figure 35 is similar to figure 32 except the temperature skill scores are 3 class.

Figure 36 is similar to figure 33 except the temperature skill scores are 3 class.

Figure 37 depicts the 100 stations in the United States where the precipitation forecasts are verified.

Figure 38 is an example of a day 3, 4, or 5 precipitation forecast. The dashed lines are the 24-hour departure from normal probability of precipitation (DN POP) forecast for January 3. The solid lines are the 24-hour climatological (normal) probability of precipitation (NPOP) for the first 15 days of January. A total of (DN POP + NPOP) ≥ 30 is considered "yes" forecast of precipitation (≥ .01 inch). All stations with an (NPOP) ≥ 30 are considered as a yes climatological forecast of precipitation.

Figure 39 is a plot of the calendar year 1983 monthly mean Gilman precipitation skill scores for the man, climatology, and NMC/NWP model precipitation forecasts verifying on days 3, 4, and 5 after forecast day. (See Appendix C for an explanation of this score.)
Figure 40 is a plot of the 14 year (1970-1983) average monthly mean Gilman precipitation skill scores for the man and climatology precipitation forecasts verifying on days 3, 4, and 5 after forecast day.

Figure 41 is a plot of the 1970 through 1983 calendar year Gilman precipitation skill scores for the man and climatology precipitation forecasts verifying on days 3, 4, and 5 after forecast day.

Figure 42 is a plot of the 1970 through 1983 Gilman precipitation skill scores for the man and climatology precipitation forecasts verifying on days \((3+4+5)/3\) after forecast day.

Figure 43 is similar to figure 38 except the skill score is Hughes. (See Appendix D for an explanation of this score.)

Figure 44 is similar to figure 39 except the average is for 7 years, the skill score is Hughes, and climatology is not depicted.

Figure 45 is similar to figure 40 except the calendar years are 1977 through 1983 and the skill score is Hughes.

Figure 46 is similar to figure 38 except the skill score is Hughes Probability. (See Appendix E for an explanation of this score.)

Figure 47 is similar to figure 39 except the average is for 6 years and the skill score is Hughes Probability.

Figure 48 is similar to figure 40 except the calendar years are 1978 through 1983 and the skill score is Hughes Probability.

Figure 49 is a plot of the calendar year 1983 monthly mean 3 class precipitation skill scores for the man and climatology mean precipitation forecasts verifying 1 to 5 days after forecast day. (See Appendix F for an explanation of this score.)

Figure 50 is a plot of the 6 year (1978-1983) average monthly mean 3 class precipitation skill scores for the man and climatology mean precipitation forecasts verifying 1 to 5 days after forecast day.
Figure 51 is a plot of the 1978 through 1983 calendar year precipitation skill scores for the man and climatology mean precipitation forecasts verifying 1 to 5 days after forecast day.

Figure 52 is similar to figure 49 except the observed (P OBS - persistence of the 5 day mean observed precipitation as a 6-10 day forecast) is depicted and the forecast is for 6 to 10 days.

Figure 53 is similar to figure 50 except the forecast is for 6 to 10 days.

Figure 54 is similar to figure 51 except the forecast is for 6 to 10 days.

Figures 55 through 66 are plots of the calendar year 1983 monthly mean (standardized + unstandardized) correlation scores for the man, LFM, ECMWF, LR, NMC/NWP model and climatology (North American + United States) area mean sea level pressure progs verifying on days 1 through 7 after forecast day.

Figure 67 is a plot of the 1968 through 1983 calendar year standardized correlation scores for the man and NMC/NWP model North American area mean sea level pressure progs verifying on days (3+4+5) after forecast day.

Figures 68 through 79 are plots of the calendar year 1983 monthly mean standardized correlation scores for the LFM, LR, ECMWF, and NMC/NWP model North American area 500 mb progs verifying on days 1 through 7 after forecast day.

Figures 80 through 91 are plots of the calendar year 1983 absolute error minimum and maximum temperature scores for the man, KL, LR, and climatology temperature forecasts verifying on days 1 through 7 after forecast day.
SECTION 1
Man & Machine (NMC/NWP Guidance)
Mean Sea Level Pressure and 500 MB Correlation Scores
DAYS 3, 4, AND 5 MONTHLY MEAN NA MLSIP STANDARDIZED CORRELATION SCORES FOR MAN AND NMC/NWS SMG2C MODEL 1983

MONTHLY MEAN RECORD SCORES

CLIMATOLOGY

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 2
DAYS 3, 4, AND 5 STANDARDIZED NORTH AMERICAN MEAN SEA LEVEL PRESSURE CORRELATION SCORES x 100

CALENDAR YEAR AVERAGE
MAN --- NMC/NWP MODEL --- (SMG)
Figure 5

DAYS 3, 4, AND 5 MONTHLY MEAN NA MSLP CORRELATION SCORES FOR MAN AND NMC/NWP

CLIMATOLOGY

DAY 3 MAN

DAY 3 MACHINE

DAY 5 MAN

DAY 5 MACHINE

DAY 4 MAN

DAY 4 MACHINE

MONTHLY MEAN RECORD SCORES

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 6
DAYS 3, 4, AND 5
NORTH AMERICAN MEAN SEA LEVEL PRESSURE
CORRELATION SCORES X 100

CALENDAR YEAR AVERAGE
MAN—— NMC/NWF MODEL—— (SMG)

Figure 7
DAYS 3, 4, and 5 MONTHLY MEAN NA 500MB STANDARDIZED CORRELATION SCORES FOR SMG2C MODEL 1983

CORRELATION
SCORE X 100

0 - Monthly Mean Record Scores

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 3
DAYS 3, 4, AND 5 LONG TERM MONTHLY MEAN NA SCORE STANDARDIZED CORRELATION
SCORES NMC/NWP MODEL (1970-1983)

Climatology

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 3
DAYS 3, 4, AND 5 STANDARDIZED NORTH AMERICAN 500 MB CORRELATION SCORES X 100

CALENDAR YEAR AVERAGE

NMC/NWF MODEL

CLIMATOLOGY = 0

YEAR

Figure 10
DAYS 3, 4, AND 5 MONTHLY MEAN US MSFL STANDARDIZED CORRELATION
SCORES FOR MAN AND NMC/NWP SMG2C MODEL 1963

MONTHLY MEAN RECORD SCORES

CLIMATOLOGY

Figure 11
DAYS 3, 4, AND 5 STANDARDIZED UNITED STATES MEAN SEA LEVEL PRESSURE CORRELATION SCORES X 100

CALENDAR YEAR AVERAGE

NMC/NWF MODEL——

Figure 13
DAYS 3, 4, AND 5 MONTHLY MEAN US MSLP CORRELATION SCORES FOR MAN AND NMC/NDF 3 Meyer MODEL 1983
DAYS 3, 4, AND 5 UNITED STATES MEAN SEA LEVEL PRESSURE CORRELATION SCORES X 100

CALENDAR YEAR AVERAGE
MAN --- NMC/NWP MODEL ---

Figure 16
YEAR
DAYS 3, 4, AND 5 MONTHLY MEAN US 500MB STANDARDIZED CORRELATION SCORES FOR SMG2C MODEL 1983

0 - Monthly Mean Record Scores

CLIMATOLOGY
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 17
DAYS 3, 4, AND 5 LONG TERM MONTHLY MEAN US 500MB STANDARDIZED CORRELATION SCORES NMC/NWP MODEL (1975-1983)

CLIMATOLOGY

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 18
DAYS 3, 4, AND 5 STANDARDIZED UNITED STATES 500MB CORRELATION SCORES X 100

CALENDAR YEAR AVERAGE NMC/NWP MODEL — (SMG)

CHLIMATOLOGY = 0

Incompleter Data

Figure 19
6 TO 10 DAY NORTH AMERICAN MONTHLY MEAN 500MB NORMALIZED CORRELATION SCORES
FOR 1983. CORRELATION SCORE = CORRELATION SCORE X 100.

APPROXIMATELY 13 CASES PER MONTH

Record scores for MAN and SMG
6 TO 10 DAY NORTH AMERICAN LONG TERM MONTHLY MEAN 500MB CORRELATION SCORES

CORRELATION SCORE = CORRELATION SCORE \times 100

APPROXIMATELY 13 CASES PER MONTH

---- MAN (1979-1983)
--- SMG (1979-1983)

CLIMATOLOGY

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 21
ANNUAL 6 TO 10 DAY NORTH AMERICAN 500 MB MEAN CORRELATION SCORES

CORRELATION SCORE = CORRELATION SCORE X 100

APPROXIMATELY 13 CASES PER MONTH

--- Man
--- NMC/NWP Model
--- ECMWF Model

Figure 22
SECTION 2

Man & Machine (KL Guidance)

Absolute Error Temperature Scores
MRFG Temperature Verification
Stations 1 through 41 for days 3, 4, and 5 and 1 through 61 for 1 to 5 and 6 to 10 day mean forecasts.
DAYS 3, 4, AND 5 MONTHLY MEAN MINIMUM TEMPERATURE ABSOLUTE ERROR

SCORE FOR MAN AND KL 1983

CLIMATOLOGY

DAY 5 KL

DAY 5 MAN

DAY 4 KL

DAY 4 MAN

DAY 3 KL

DAY 3 MAN

MONTHLY MEAN RECORD SCORES

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 24
Days 3, 4, and 5 bi-monthly mean minimum temperature absolute error scores for man and KL calendar year average.
DAYS 3, 4, AND 5 MONTHLY MEAN MAXIMUM TEMPERATURE ABSOLUTE ERROR SCORE FOR MAN AND KL 1981

CLIMATOLOGY
DAY 5 KL
DAY 4 KL
DAY 5 MAN
DAY 4 MAN
DAY 3 MAN

MONTHLY MEAN RECORD SCORE

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
DAYS 3, 4, AND 5 BI-MONTHLY MEAN MAXIMUM TEMPERATURE ABSOLUTE ERROR
SCORES FOR MAN AND KL. CALENDAR YEAR AVERAGE

YEAR 72 73 74 75 76 77 78 79 80 81 82 83 84 85
Figure 29
Figure 30

DAYS \((3+4+5)/3\) BI-MONTHLY MEAN (MINIMUM + MAXIMUM)

\[\frac{2}{3} \] TEMPERATURE ABSOLUTE ERROR: SCORES FOR MAN AND

KL: CALENDAR YEAR AVERAGE

CLIMATOLOGY

MAN

ABSOLUTE ERROR

Year

6 TO 10 DAY 5 GLASS TEMPERATURE SKILL SCORES CALENDAR YEAR AVERAGE

APPROXIMATELY 13 CASES PER MONTH

Figure 33
6 TO 10 DAY 3 CLAUSE LONG TERM MONTHLY MEAN TEMPERATURE SKILL SCORES
APPROXIMATELY 13 CASES PER MONTH

Figure 35
SECTION 3

Man & Climatology

Precipitation Skill Scores
Figure 38

- N POP for Jan 1-15
- DN POP for Jan 3
DAYS 3, 4, AND 5 MONTHLY MEAN GILMAN PRECIPITATION SKILL SCORES
FOR 1983

SKILL SCORE

Day 3 Man

Day 4 Man

Day 5 Man

Day 3 SMG

Day 4 SMG

Climatology

Day 5 SMG

MONTHLY MEAN RECORD

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 39
DAYS 3, 4, AND 5 LONG TERM MONTHLY MEAN GILMAN PRECIPITATION SKILL SCORES FOR 1970-1983

Figure 40

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Figure 41

DAYS 3, 4, and 5 GILMAN PRECIPITATION SKILL SCORES

Day 3 Man

Day 4 Man

Climatology

Day 5 Man

53
CALENDAR YEAR AVERAGE

SKILL SCORE

27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

ANNUAL GILMAN PRECIPITATION SKILL SCORES FOR
DAYS \((3 + 4 + 5) \div 3\)

Figure 42
Figure 43: Days 3, 4, and 5 Monthly Mean Hughes Precipitation Skill Scores for 1983
DAYS 3, 4, AND 5 LONG TERM MONTHLY MEAN HUGHES PRECIPITATION SKILL SCORES FOR 1977-1983

Climatology not shown

Figure 44

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Figure 47: Days 3, 4, and 5 long term monthly mean Hughes probability skill scores for 1978-1983.
Figure 48
1 TO 5 DAY MONTHLY MEAN 3 CLASS PRECIPITATION SKILL SCORES
FOR 1983

Figure 49

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
LONG TERM MONTHLY MEAN 1 TO 5 DAY 3 CLASS PRECIPITATION SKILL SCORES FOR 1978-1983

Figure 50

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Figure 51: 1 TO 6-DAY 3-CLASS PRECIPITATION SKILL SCORES
 CALENDAR YEAR AVERAGE

MAN

CLIMATOLOGY

6 TO 10 DAY 3 CLASS MONTHLY MEAN PRECIPITATION SKILL SCORES
FOR 1983
APPROXIMATELY 13 CASES PER MONTH

SKILL SCORE

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35
-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

P OBS
MAN
CLIMATOLOGY

MONTHLY MEAN RECORD

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 52
SECTION 4

Man & Machine (NMC/NWP Guidance)

Days 1 through 7 Monthly Mean Sea Level Pressure, 500 MB and Absolute Error/Temperature Scores
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES MEAN SEA LEVEL PRESSURE CORRELATION SCORES FOR FEBRUARY 1983

CORRELATION SCORE = 100 x (Unstandardized Score + Standardized Score) / 2

Figure 56
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES MEAN SEA LEVEL PRESSURE
CORRELATION SCORES FOR MARCH 1983
CORRELATION SCORE = 100 x (Unstandardized Score + Standardized Score) / 2
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES MEAN SEA LEVEL PRESSURE CORRELATION SCORES FOR APRIL 1983

CORRELATION SCORE = 100 x (Unstandardized Score + Standardized Score) ÷ 2

Figure 58
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES MEAN SEA LEVEL PRESSURE CORRELATION SCORES FOR MAY 1983

CORRELATION SCORE = 100 \times (\text{Unstandardized Score} + \text{Standardized Score})^2

Figure 59
DAYS 1 THRU 7: NORTH AMERICAN AND UNITED STATES MEAN SEA LEVEL PRESSURE CORRELATION SCORES FOR JUNE 1983

CORRELATION SCORE = 100 x (Unstandardized Score + Standardized Score)²

Figure 60
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES MEAN SEA LEVEL PRESSURE CORRELATION SCORES FOR JULY 1983

CORRELATION SCORE = 100. x (Unstandardized Score - Standardized Score).
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES MEAN SEA LEVEL PRESSURE CORRELATION SCORES FOR AUGUST 1983

CORRELATION SCORE = 100 x (Unstandardized Score + Standardized Score) + 2

Figure 62
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES MEAN SEA LEVEL PRESSURE CORRELATION SCORES FOR SEPTEMBER 1983

CORRELATION SCORES = 100 x (Unstandardized Score + Standardized Score)

Figure 63
DAYS 1. THRU 7 NORTH AMERICAN AND UNITED STATES MEAN SEA LEVEL PRESSURE CORRELATION SCORES FOR OCTOBER 1983

CORRELATION SCORE = 100 x (Unstandardized Score + Standardized Score) / 2

Figure 64
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES MEAN SEA LEVEL PRESSURE CORRELATION SCORES FOR NOVEMBER 1983

CORRELATION SCORE = 100 x (Unstandardized Score + Standardized Score)
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES MEAN SEA LEVEL PRESSURE CORRELATION SCORES FOR DECEMBER 1983:

CORRELATION SCORE = 100 \times (\text{Unstandardized Score} + \text{Standardized Score})

Figure 66
North American Days \((3+4+5)/3 \) NMC/NWP
Model \(\text{Model} \)
Mean Sea Level Pressure Standardized

Correlation Scores \(\times 100 \)

Calendar Year Average

CLIMATOLOGY = 10

Figure 67
Figure 68

CLIMATOLOGY

JANUARY 1983

CORRELATIONS SCORES = 100 x Standardized Score

SMG

ECMWF

LFM

LR

DAYS

00

HOURS

24

36

48

60

72

84

96

108

120

132

144

156

168

180
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES 500ME CORRELATION SCORES
FOR FEBRUARY 1983

CORRELATION SCORES = 100. x Standardized Score

Figure 69
Figure 71

CLIMATOLOGY

FOR APRIL 1983

CORRELATION SCORES = 100 \times \text{Standardized Score}
Figure 72

CLIMATOLOGY

FOR MAY 1983

CORRELATION SCORES = 100 \times \text{Standardized Score}
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES 500MB CORRELATION SCORES FOR JUNE 1983

CORRELATION SCORES = 100 x Standardized Score

Figure 73
CLIMATOLOGY
Figure 75

Climatology
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES 500 MB CORRELATION
SCORES FOR SEPTEMBER 1983

CORRELATION SCORES = 100 \times \text{Standardized Score}

Figure 76

CLIMATOLOGY

DAYS

HOURS

24 36 48 60 72 84 96 108 120 132 144 156 168 180
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES 500MB CORRELATION SCORES
FOR OCTOBER 1983

CORRELATION SCORE = 100 \times \text{Standardized Score}

Figure 77
CLIMATOLOGY

- SMG
- ECMWF
- LFM
- LR
DAYS 1 THRU 7 NORTH AMERICAN AND UNITED STATES 500 MB CORRELATION SCORES
FOR DECEMBER 1983

CORRELATION SCORE = 100. x STANDARDIZED SCORE

Figure 79
CLIMATOLOGY
CORRELATION SCORE = 100. \times \text{STANDARDIZED SCORE}

Figure 78
CLIMATOLOGY

<table>
<thead>
<tr>
<th>SMG</th>
<th>ECMWF</th>
<th>LFM</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>75</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

SCORES FOR NOVEMBER 1983
Figure 83

DAYS 1 THRU 7 TEMPERATURE ABSOLUTE ERROR SCORES FOR APRIL 1983

CLIMATOLOGY MAXIMUM

CLIMATOLOGY MINIMUM

AVERAGE ABS. ERROR

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5

DAYS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
DAYS 11 THRU 17 TEMPERATURE ABSOLUTE ERROR SCORES FOR MAY 1983

CLIMATOLOGY MAXIMUM

CLIMATOLOGY MINIMUM

Figure 84
Figure 85: Days 1 thru 7 temperature absolute error scores for June 1983.
Figure 87

DAYS 1 THRU 7 TEMPERATURE ABSOLUTE ERROR SCORES FOR AUGUST 1983

CLIMATOLOGY MAXIMUM

CLIMATOLOGY MINIMUM

- Man
- MOS/KL
- LR
- CLIMATOLOGY

Figure 87
Figure 89

DAYS 11 THRU 7: TEMPERATURE ABSOLUTE ERROR SCORES FOR OCTOBER 1983

AVG ABS ERROR

CLIMATOLOGY MINIMUM

CLIMATOLOGY MAXIMUM

MOS/KL

LR

CLIMATOLOGY

DAYS HOURS 36 48 60 72 84 96 108 120 132 144 156 168 180 192
DAYS 1 THRU 7 TEMPERATURE ABSOLUTE ERROR SCORES FOR NOVEMBER 1983

CLIMATOLOGY MINIMUM

CLIMATOLOGY MAXIMUM

Figure 90
DAYS 1 THRU 7 TEMPERATURE ABSOLUTE ERROR SCORES FOR DECEMBER 1983
The pattern correlation score (Appendix A) has been the basic score used by the MRFG to verify the MSLP and 500 MB progs since the start of the MRFG program. The correlation score was chosen because it is more sensitive to the phasing of troughs and ridges (considered to be more important) than to the depth or height of these systems. The MSLP and 500 MB operational analyses (HUF) were used to verify the forecast through 1976 and the LFM since 1977.

The North America (NA) standardized correlation score is the oldest score of record. The US subset unfortunately was contaminated from the beginning through 1975 by a coding (program) error affecting the observed field (verifying analysis).

It was assumed from the start that a MSLP standardized (anomalous field) score of greater than 0.0 (climatology) would result in the derived forecasts of temperature and precipitation having more skill than climatology (as a forecast). However, experience has indicated that a NA score of 0.17 or better is required to accomplish this.

Most of the forecasters complained from the beginning about verifying a forecast of the anomalous MSLP field (which they could not "see") instead of the one they produced (the actual MSLP field). In order to appease the forecaster and obtain a score for the normal (climatology) as a forecast the unstandardized (actual MSLP field) score was introduced in 1977 and has been used successfully ever since.

A glance at figures 2 through 22 shows that, for the most part, the monthly mean scores during 1983 were higher (better) than the long term mean scores (note - the long term mean includes the 1983 scores). Also a comparison of the current long term mean scores (figures 3,6,9,12,15, and 18)
with those published in NMC ON 271 of February 1983, indicates an upward trend. The many monthly mean record scores (figures 2, 5, 8, 11, 14, 17, and 20) set by both the man and NMC/NWP model guidance resulted in 1983 being a record year for the days 3, 4, and 5 (figures 4, 7, 10, 13, 16, and 19) and 6 to 10 day (figure 22) forecasts.

No comment is made concerning the "betterment" of the man over the NMC/NWP model guidance except that it appears to be significant. The overall increase in skill of the guidance in 1983 seems to justify the changes made to/in the NMC/NWP model during the past year (see pages 2 and 3), though a better initial global analysis also could account for some of the improvement. Since the scores for the circulation are records, one might expect the derived forecasts of temperature and precipitation also to be records.

SECTION 2 TEMPERATURE ABSOLUTE ERROR AND SKILL SCORES PAGES 33 TO 47

In 1983, as usual, the bi-monthly mean absolute error minimum (figure 24) and maximum (figure 26) temperature scores for the man exhibited a clear superiority over the KL and climatology temperature forecasts for days 3, 4, and 5. The man minimum (figure 26) temperature scores for days 3, 4, and 5 were all-time records while the maximum (figure 29) scores tied the record for day 3 and were second for days 4 and 5.

The man 6 to 10 day 5 class (figure 32) and 3 class (figure 36) temperature skill scores were records in 1983. It should be noted (figures 31 and 34) that the FP scores were not available for January.

SECTION 3 PRECIPITATION SKILL SCORES PAGES 48 TO 66

The Gilman skill score, except for the problem mentioned in Appendix C, is quite sensitive to correct forecasts of precipitation. The Hughes skill score is quite sensitive to correct forecasts of no precipitation
at stations with a high climatic precipitation probability. The experimental score is quite sensitive to correct forecasts of precipitation at stations with a low climatic precipitation probability. Thus, these three scores complement one another.

In 1983, as in recent years, the monthly mean Gilman (figure 39), Hughes (figure 43), and Hughes Probability (figure 46) precipitation skill scores for the man showed a clear superiority over climatology and the NMC/NWP model on days 3, 4, and 5. The man Gilman precipitation skill scores (figure 41) were a record for day 3, tied the record for day 4, and were second best for day 5. The Hughes skill (figure 45) and probability (figure 48) scores, however, are not quite so record breaking. The 1983 monthly mean 3 class precipitation skill scores for the man 1 to 5 day (figure 51) and 6 to 10 day (figure 54) forecasts were records.

SECTION 4 MSLP, 500 MB, AND TEMPERATURE SCORES FOR DAYS 1 THROUGH 7 PAGES 67 TO 104

Certainly consideration has to be given, after looking at figures 55 through 91, to producing (operationally) for public consumption man MSLP and temperature forecasts for days 6 and 7. It should be noted that for comparison purposes (operational utility) the ECMWF scores have to be "backed down" approximately 12 hours.

CONCLUSION

Figures 30, 42, and 67 quite effectively sum up the record breaking performance of the MRFG for 1983. The year 1984 promises to be an interesting year with the introduction of the SMG4C in October of 1983.

Acknowledgements

Thanks to Mrs. Evelyn Seek and Mrs. Donna Thomas for their help with the typing and to Eric McVicker for running off copies.
The standardized mean sea level pressure correlation score is used to determine the skill of the man and machine days 3, 4 and 5 mean sea level pressure forecasts. The correlation score is employed because the phasing instead of the intensity of systems primarily determines how well the various weather parameters can be forecast. The standardizing procedure prevents the contribution of the high variability (higher latitude) grid points from overwhelming the low variability grid points (lower latitude).

\[
f = \text{forecast mean sea level pressure at a grid point} \\
o = \text{observed mean sea level pressure at a grid point} \\
\sigma = \text{standard deviation at a grid point} \\
n = \text{normal mean sea level pressure at a grid point}
\]

\[
F = \frac{f - n}{\sigma} \quad \quad \quad \quad O = \frac{o - n}{\sigma}
\]

\[
\bar{F} = \text{average standardized forecast across n grid points} \\
\bar{O} = \text{average standardized observed across n grid points}
\]

\[
\text{RMS } F = \sqrt{\frac{1}{n} \sum (F - F)^2} \quad \quad \quad \quad \text{RMS } O = \sqrt{\frac{1}{n} \sum (O - O)^2}
\]

\[
\text{RMS Error} = \sqrt{\frac{1}{n} \sum (F - O)^2} \\
\text{Average Absolute Error} = \frac{1}{n} \sum |F - O|
\]

\[
\text{Correlation} = \frac{FO - \bar{F} \bar{O}}{\sqrt{(F^2 - \bar{F}^2) (O^2 - \bar{O}^2)}} \times 100
\]

Since the normal mean sea level pressure is subtracted from the forecast/observed pressure at each grid point, it is assumed that the correlation of the normal to the observed is always zero. Therefore, any positive score is considered
to have skill over the normal. Some doubts have been raised about this assumption, however, and for the past 5 years the unstandardized correlation score also has been calculated. This procedure allows a correlation score to be computed for the normal. This score then is simply the correlation of the forecast to the observed mean sea level pressure.
APPENDIX B

The 5 day mean temperature skill score is a generalization of the Heidke skill score where the expected values are derived from the observed temperature.

Heidke Skill = \(\frac{C - E}{N - E} \)

- \(C \) = total correct (hits)
- \(N \) = total number of forecasts (61)
- \(E \) = expected number of hits

The expected value is calculated as follows from the number of stations in each of the observed temperature categories:

\[E = \frac{1}{8} \times \text{Much Below} + \frac{1}{8} \times \text{Much Above} + \frac{1}{4} \times \text{Below} + \frac{1}{4} \times \text{Above} + \frac{1}{4} \times \text{Normal} \]

The 5 day mean 3 class temperature skill score simply "lumps" together the much below with the below and the much above with the above. The expected \(E \) then is equal to \(\frac{1}{4} \times \text{Below} + \frac{1}{4} \times \text{Normal} + \frac{1}{4} \times \text{Above} \).
Appendix C

The Gilman skill score is a generalization of the Heidke skill score where the expected values are derived from a randomized version of the precipitation forecast.

\[
\text{Heidke Skill} = \frac{C - E}{N - E}
\]

- \(C\) = total correct (hits)
- \(N\) = total number of forecasts (100)
- \(E\) = expected number of hits

However, for a randomized forecast, allowance must be made for stations having far different precipitation climate (N POP) across the United States. Therefore, to compute and score an expected chance forecast, climatology must be considered.

The procedure for this is as follows:

First, the actual number of forecasts of precipitation are distributed randomly taking into account station climatology. The expected number of chance hits is then given by:

\[
E = \sum_{i} p_i r_i + (1 - p_i)(1 - r_i)
\]

or

\[
E = 2\sum_{i} p_i r_i + N - 5p_i - \sum_{i} r_i
\]

where \(r_i = 1\) for precipitation (≥0.01 inch) and 0 for no precipitation (<0.01 inch).

Now an expression for \(p_i\), which is the probability that after the forecast precipitation events are redistributed randomly a forecast precipitation event will fall at point "i" is given approximately by \(p_i = F x a_i\). Here \(F = \) total number of forecasted precipitation events and \(a_i = \) climatic precipitation probability (N POP). This approximate value for \(p_i\) is most valid for small values of \(F\) and \(a_i / a_i\) and is unstable at times. Because of this instability the less sophisticated but more stable Hughes skill score was developed.

Substituting the expression (b) into (a) gives

\[
E = 2\sum_{i} p_i a_i + N - F - R
\]

where \(E = \) the approximate expected value of a randomized forecast, \(R = \) total precipitation cases, and \(N = \) total number of stations. If the climatic probabilities are uniform (\(a_i = a_j = a\)), then the approximate value of \(E\) reduces to the standard Heidke value given by:

\[
E = \frac{(N-F)(N-R)+FR}{N}
\]
The Hughes skill score is a generalization of the Heidke skill score where the expected values are derived from the observed precipitation:

\[
\text{Heidke Skill} = \frac{C - E}{N - E}
\]

- \(C\) = total correct (hits)
- \(N\) = total number of forecasts (100)
- \(E\) = expected number of hits

If the average precipitation climate (NPOP) of 12 stations having precipitation is 25, then the expected (precipitation) is simply \(12 \times 0.25\) or 3 stations. If the average NPOP of the (100-12) stations not having precipitation is also 25 then the expected (no precipitation) is simply \(88 \times (1.0 - 0.25)\) or 66 stations. The total expected (E) then is 69 stations. If the forecaster hit (C) 75 stations correctly, his skill score then is \((75-69)/(100-69) \times 100\) or 19.
APPENDIX F

The (Hughes) probability score is not a skill score yet it is quite simple to understand. A rough score (RS) is calculated for each station (N=1 to 100) as follows:

<table>
<thead>
<tr>
<th>Forecast (DN POP + NPOP)</th>
<th>Observed (P=1)</th>
<th>RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥30</td>
<td>P=1</td>
<td>+(1 - NPOP)</td>
</tr>
<tr>
<td>(DN POP + NPOP) ≥30</td>
<td>P=0 and NPOP ≥50</td>
<td>-(NPOP)</td>
</tr>
<tr>
<td>(DN POP + NPOP) <30</td>
<td>P=1 and NPOP ≥50</td>
<td>-(NPOP)</td>
</tr>
<tr>
<td>(DN POP + NPOP) ≥30</td>
<td>P=0 and NPOP <50</td>
<td>-(1 - NPOP)</td>
</tr>
<tr>
<td>(DN POP + NPOP) <30</td>
<td>P=1 and NPOP <50</td>
<td>-(1 - NPOP)</td>
</tr>
<tr>
<td>(DN POP + NPOP) <30</td>
<td>P=0</td>
<td>+(NPOP)</td>
</tr>
</tbody>
</table>

Since the total rough score (TRS) for the 100 stations does not equal 100 points, a simple iterative technique is employed which uses the RS as a f(NPOP) for each station to bring the total number of points up to 100.

The FORTRAN language routine is:

```
TTY = 0
70 DO 69 I = 1, 100
 TRS = (100.0 - TRS) * ABS(RS(I)) * .01
 IF(RS(I)) 73, 74, 74
73 RS(I) = RS(I) - TRS
 GO TO 69
74 RS(I) = RS(I) + TRS
69 TTY = TTY + ABS(RS(I))
 TRS = TTY
 TTY = 0.0
 IF (TRS - 99.8) 70, 71, 71
71 CONTINUE
```
APPENDIX F

The 5-Day mean precipitation skill score is a generalization of the Heidke skill score where the expected values are derived from the observed precipitation:

\[
\text{Heidke Skill} = \frac{C - E}{N - E}
\]

- \(C\) = total correct (hits)
- \(N\) = total number of forecasts (100)
- \(E\) = expected number of hits

For example, in January the number of stations in the area covered by the (NP/P), (NP/M/H) and (L/M/H) categories is 21, 28 and 51 respectively. The average value of the probability of NP for the stations in the (NP/P) area is 59% and 40% in the (NP/M/H) area. Now if (NP/L) is coded as 1, M as 2 and (P/H) as 3, then the number of stations expected to have coded value 1 thru 3 is as follows:

- 33% of (L/M/H) = 51 x .33 = 17 stations coded 1, 2, 3
- 40% of (NP/M/H) = 28 x .40 = 11 stations coded as 1 and 8.5 coded as 2,3
- 59% of (NP/P) = 21 x .59 = 12 stations coded as 1 and 9 coded as 3

Thus, code 1 = 17 + 11 + 12 = 40 stations
 code 2 = 17 + 8.5 = 25.5 stations
 code 3 = 17 + 8.5 + 9 = 34.5 stations

Therefore, the expected value = .40a + .255b + .345c

where a, b and c are the number of coded values 1, 2 and 3 observed.
LIMITS FOR FIVE-DAY PRECIPITATION FORECASTS
Upper and lower decimals represent the lower limits, in inches, for heavy and moderate precipitation forecasts respectively. Percentage figures indicate relative frequency of 5-day periods with no measurable amount of precipitation.

JANUARY