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ABSTRACT

A quasi-inverse linear method has been developed to study the sensitivity forecast errors to
initial conditions for the National Centers for Environmental Prediction (NCEP)'s global spectral
model. The inverse is approximated by running the tangent linear model (TLM) of the nonlinear
forecast model with a negative time step, but reversing the sign of friction and diffusion terms, in
order to avoid the computational instability that would be associated with these terms if they were run
backwards. As usually done using the adjoint model integrations, the quasi-inverse TLM is started
at the time of the verified forecast error and integrated backwards to the corresponding initial time.

First, a numerical experiment shows that this quasi-inverse linear estimation is able to trace
back the differences between two perturbed forecasts from the NCEP ensemble forecasting system,
and recover with good accuracy the known difference between the two forecasts at the initial time.
This result shows that both the linear estimation and the quasi-inverse linear estimation are quite close
to the nonlinear evolution of the perturbation in the nonlinear forecast model, suggesting that we
should be able to apply the method to study of the sensitivity of forecast errors to initial conditions.
We then calculate the perturbation field at the initial time (linear sensitivity perturbation) by tracing
back a one-day forecast error using the TLM quasi-inverse estimation. As could be expected from
the previous experiment, when the estimated error is subtracted from the original analysis, the new
initial conditions lead to an almost perfect one-day forecast. The forecasts beyond day one are also
considerably improved, indicating that the initial conditions have indeed been improved.

In the remainder of the paper, this quasi-inverse linear sensitivity method is compared with
the adjoint sensitivity method (Pu et al. 1995; Rabier et al. 1996) for medium range weather
forecasting. We find that both methods are able to trace back the forecast error to sensitivity
perturbations which improve the initial conditions. However, the forecast improvement obtained by
the quasi-inverse linear method is considerably better than that obtained with a single adjoint iteration,
and similar to the one obtained using 5 iterations of the adjoint method, even though each adjoint
iteration requires at least twice the computer resources of the quasi-inverse TLM estimation. Whereas
the adjoint forecast sensitivities are closely related to singular vectors, the quasi-inverse linear
sensitivities are associated with the bred (Lyapunov) vectors used for ensemble forecasting at NCEP
(Toth and Kalnay 1993). The features of the two type sensitivity perturbations are also compared in
this study. Finally, the possibility of the use of the sensitivity perturbation to improve future forecast
skill is discussed, and preliminary experiments encourage us to further test this rather inexpensive
method for possible operational use.

The model used in this study is the NCEP operational global spectral model at a resolution
of T62/L28. The corresponding TLM, and its adjoint, are based on an adiabatic version of the model
but include both horizontal and vertical diffusion.
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1. Introduction

In the last two decades, the skill of numerical weather prediction (NWP) has improved

enormously, and has become the essential guidance in most weather forecast centers. These
improvements are due to three main factors: 1) the use of finer spatial resolution made possible

by substantial increases in computational power and more efficient numerical techniques; 2)

more comprehensive and accurate representation of the physical processes within the models;
and 3) improved methods for data assimilation and use of new types of observations resulting
in better initial conditions for the atmospheric models. Recent experience with data assimilation

and forecast experiments suggest that large forecast errors usually arise from errors in the initial

conditions rather than from errors in model formulation, at least in the extratropics (Reynolds et

al. 1994, Simmons 1995a; Rabier et aL 1996;). Predictability studies such as those by Simmons

et al. (1995b) suggest that improvements in the estimation of the initial state offer the most

promising path to more accurate individual (deterministic) forecasts, although there is still scope

for benefits from model improvement and from ensemble forecasting.

In recent years a considerable effort has been placed on the use of advanced data
assimilation methods in order to improve the forecasts initial conditions. The 3-D variational

techniques have become operationally feasible, and have been implemented in 1991 at the
National Centers for Environmental Prediction (NCEP, formerly NMC) and in 1996 at the
European Centre for Medium-range Weather Forecasts (ECMWF), replacing the Optimal
Interpolation schemes (Derber et al. 1991; Parrish and Derber 1992; Andersson et al. 1996).

The more advanced 4-D variational data assimilation method remains very expensive and still
on the edge of feasibility for operational implementation (Courtier et al. 1994), although

Zupanski and Zupanski (1996) have shown excellent convergence properties for the NCEP
regional Eta model. Efforts to develop computationally feasible applications of Kalman Filtering
to data assimilation are also underway (Cohn 1994). There are also studies suggesting
improvement of the initial conditions by using either the forecast error itself, or the estimation

of the growing modes of the atmosphere to decrease the uncertainty in the initial conditions

(Kalnay and Toth 1994; Rabier et al. 1996).

Since it is not easy to exactly separate the errors due to the initial conditions from those

due to model deficiencies, there has been a considerable interest in the investigation of the

sensitivity of forecast errors to initial conditions. Recent studies with adjoint models in
numerical weather prediction (Rabier et al. 1996; Pu et al. 1995) have shown that the gradient

of the short-range forecast error taken with respect to the initial conditions, commonly referred

2



to as a "sensitivity pattern," can be an effective means of identifying structures in the initial

conditions that might cause large forecast errors. Rabier et al. calculated a small perturbation

(forecast sensitivity) in the initial conditions that minimized the observed two-day forecast error

over the Northern Hemisphere using the adjoint method; the perturbation is obtained as the
gradient of an error function with respect to the initial condition, multiplied by a fixed step size.

Their experiments showed that the sensitivity forecasts from the adjusted (perturbed) initial

conditions were better than the forecasts from the original (unperturbed) initial conditions at the
same starting time (two-days old), but not better than the forecasts from the latest available

operational initial conditions. Pu et al. (1995) extended this idea, by first calculating the initial

perturbation of forecast sensitivity with a single iteration of conjugate-gradient method for the
NCEP's global spectral forecast model, and then using the improved two-days-old initial
conditions in a second iteration of the NCEP three-dimensional variational analysis cycle until

the latest initial conditions are reached. Their results demonstrated that the method enhances the
future medium range weather forecast skill. Since the adjoint minimization method is an
iterative process, Zupanski (1995) suggested that the sensitivity pattern should also be performed

iteratively. Using the NCEP regional model Eta model and its adjoint, he showed considerable

improvement in the sensitivity patterns using up to 10 iterations.

In the present study we develop a quasi-inverse linear estimation of the sensitivity of

forecast errors to initial conditions as an alternative to the adjoint (transpose) method used so far.
The quasi-inverse is calculated by integrating the tangent linear model (TLM) backwards and

thus tracing back the forecast errors to the initial time. The differences between the quasi-linear

sensitivity estimation and the adjoint sensitivity pattern are then presented.

The tangent linear model (TLM) has been used in the context of sensitivity studies

(Errico and Vukicevic 1992; Lacarra and Talagrand 1988; Errico et al. 1993), since it describes

the forward evolution of small perturbations in a forecast model. In most cases, however, the

TLM has been used to determine the evolution of small perturbations of fields in a model

forecast, and, most importantly, in the development and assessment of the adjoint model. This

latter application has received much attention in recently years, since the adjoint model has been
extensively applied in 4-dimensional variational data assimilation (Le Dimet and Talagrand

1986; Derber 1987 and 1989; Navon et al. 1992; Zupanski 1993; Zou et al. 1992; Zupanski and

Mesinger 1995) and in sensitivity analyses ( Vukicevic 1991; Zou et al. 1992; Zupanski 1995;

Pu et al., 1995; Rabier et al. 1996). The TLM is always used to evaluate the level of accuracy

of applications of its corresponding adjoint, because the accuracies of both models are strongly

related, and it is usually easier to think in terms of a forward model of perturbation evolution (in
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a TLM) than a backward model of sensitivities (in an adjoint). In this situation, the TLMv is

intended to approximately describe the evolution of the small differences between two nonlinear

model solutions, where one solution begins from perturbed initial or boundary conditions, or

perturbed model parameters. A TLM may be considered to be accurate as long as the solution

of TLM integration from the perturbation is a good estimate of the differences between two

nonlinear model integrations. There are some studies that examined the accuracy of specific

TLMs in the process of creating the adjoint (transpose) model (e.g., Errico et al. 1993 etc.). For

this reason, although the development of a TLM is not strictly necessary for many of the adjoint

applications, the TLM and the adjoint are usually developed together.

So far, only the adjoint model has been used in the analysis of the sensitivity of forecast

error to initial conditions, and although this application does not require the use of the TLM, it

still contains the basic assumption of the TLM, namely that the error dynamics are linear. The

studies of the sensitivity of forecast errors to the initial conditions have been done by defining

an objective forecast error function, and trying to find a solution that minimizes this function,

and therefore required the adjoint model to calculate the gradient of the function. However, in

studies of the behavior of initial perturbations growing in a forecast model, there has been

evidence that the TLM can be directly used to estimate the amplitude of this growing

perturbation up to 1 or 2 days forecast. Lacarra and Talagrand (1988) experimentally showed

that the barotropic time evolution of a small perturbation (with amplitude comparable to analysis

errors) can be described by its linear approximation if the time interval is not longer than 2-3

days. Vukicevic (1991) investigated the linearity of initial error evolution using a primitive

equation limited area model, and demonstrated that the major portion of initial forecast error

(with magnitude comparable with analysis errors) can be described by the tangent model

solutions for periods of about 1.5 days. Buizza (1994), comparing subjectively the time

evolution of integrations started adding and subtracting the same structure to the control initial

condition with amplitude comparable to (Optimal Interpolation) analysis error estimates,

concluded that nonlinear effects are small up to forecast day 2 but they can be quite large after

forecast day 4. From these experiments we can conclude that we can estimate the initial error

evolution by the time integration of the TLM. If this is the case, we should consider whether

we can use directly the TLM to estimate the initial error from the forecast error.

In this paper we address the following two questions: a) is it possible to estimate the

initial errors from observed (perceived) short-range forecast errors through a backward

integration of the TLM, and b) can we use this method to improve operational forecasts? We

develop a quasi-inverse linear method to study the sensitivity forecast error to initial conditions.
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The numerical experiments are performed using the NCEP operational global spectral model

with full physics, with T62 (horizontal triangular truncation of 62 waves) and 28 vertical sigma
levels, and the simplified corresponding TLM based on an adiabatic version (Navon et al. 1992)

but including horizontal diffusion and vertical mixing (Pu et al. 1995).

The paper is organized as follows: In section 2, we describe the mathematical

formulation and the projection operator used to obtain the quasi-inverse linear estimation. In

section 3, the nonlinear, linear and adjoint models are described. A numerical experiment with

two members of the NCEP operational forecast ensemble is performed in order to assess the
accuracy of the linear forward model (propagator) and of its quasi-inverse operator. Section 4

contains numerical experiments showing the impact of the linear sensitivity (inverse of the

perceived forecast error) on the forecast, and a comparison of this impact with that obtained with

the adjoint sensitivity patterns. In section 5, we further compare the differences of sensitivity

perturbations between the quasi-inverse TLM estimation and adjoint method. Their respective
relationship to the bred (Lyapunov) and singular vectors is also discussed in Section 5. In

section 6, the possibility of improving future forecast skill by using the sensitivity perturbation

is tested. Section 7 is a summary and discussion.

2. Mathematical Formulation of the Quasi-Inverse Method

Consider a nonlinear forecast model M that computes the evolution of the model
atmosphere from its initial state X at time t=O, to its state at time t:

Xt =Mt (Xo) (1)

The corresponding tangent linear model L propagates an perturbation of the initial state

6X0 forward in time:

Mt (X 0 +6Xo)= Mt(Xo) + 1L Xo + O(6X o ) (2)

Then, given a finite initial perturbation 6Xo, and its evolution through any finite time

interval t, the TLM approximation can be considered reasonably accurate for as long as:

Mt(Xo+6Xo) - MK(X0 ) T 6Xo (3)

As indicated in the introduction, for realistic atmospheric models, and for initial
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perturbations with amplitudes characteristic of the estimated atmospheric analysis errors, past
research experience indicates that the approximation (3) remains acceptable for about 1-3 days.

if the atmospheric model M contained only adiabatic frictionless dynamics, it would be
reversible. In that case, linear tangent model would also be adiabatic and non-dissipative, and
therefore reversible. A reversible model M can be easily inverted by running it backwards in
time:

XO M= N (4)

which is simply carried out by starting M from the "final" conditions Xt, and changing the sign
of the time step At. The same exact inversion (running backwards in time) can be applied to a

reversible TLM.

In reality, of course, comprehensive atmospheric models contain heating and frictional
terms, and, like the real atmosphere, are not reversible. Nevertheless, the successful experience
of early numerical weather prediction, which was based on quasigeostrophic, reversible
dynamics, suggests that, at least for short range forecasts, the evolution of the atmosphere is

dominated by the reversible atmospheric dynamics. In fact, the linear tangent models (and their
adjoints) successfully used at the ECMWF in the development of their ensemble forecasting
system contained originally only quasigeostrophic reversible dynamics (Molteni and Palmer,
1993). Later, the primitive equations were adopted for the TLM and its adjoint, again containing

only reversible dynamics with the exception of a simple linear surface friction and vertical
diffusion which were added in lieu of the full parameterization of irreversible physical processes

(Buizza, 1993). This simplified adjoint was also used by Rabier et al. (1996) in their forecast

sensitivity studies. A similar TLM with just the linearized reversible atmospheric dynamics of
the NCEP global model, but including a simple linear surface friction and vertical diffusion as
irreversible processes were used by Pu et al. (1995), and in the present work.

The dominance of the reversible dynamics in the short range forecasts, and the success
of the simple TLM in describing the evolution of small perturbations, suggest that, if it was

computationAlly feasible, backwards integration in time of the TLM would provide a fairly good
approximation of its inverse, and therefore allow to trace forecast errors backwards in time and
determine approximately the corresponding analysis errors. We know that dissipative terms are

computationally unstable if they are integrated backwards in time, so we have a simple choice:
either not to include them at all in the approximate inverse of the TLM, or, if the backward
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integration without friction becomes too noisy, to include them with the sign reversed. In any

case we expect the effect of these terms to be small, except perhaps near the surface.

In summary, we approximate the inverse of the TLM Lt4, by integrating the TLM

backwards in time, i.e., with a negative time step, without the dissipative terms (which are small
except near the surface), or by changing the sign of these terms during the backward integration.

If this approximate inverse is accurate, we should be able to approximately recover the initial

perturbation 6XO from two model solutions at time t:

6X 0 Lt-1 (Mt(Xo+6Xo) - Mt(Xo)) (5)

1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where Lt- represents the approximate or quasi-inverse of Lt.

Similarly, we can consider the perceived forecast error at time t given by:

Et= Mt(Xo) -X ta (6)

where Xt' is the verifying analysis valid at time t. Note that this is the perceived, and not the true

error, because the verifying analysis also contains errors, but beyond 12 hours these are

generally much smaller than the forecast errors. We would like to find a perturbation 8XO that

would correct the forecast:

Mt(Xo+6X0) Mt(Xo)+L t 6Xo 0 Xt a (7)

so that we use the approximate inverse of the TLM to obtain

Xo Lt-l (Xt- Mt(Xo)) (8)

Here 8X0 will be denoted as "sensitivity perturbation" from the quasi-inverse linear
method. It is the solution obtained when we (approximately) trace the short range perceived

forecast error back to the initial time. Since, as discussed above, the small dissipative terms are

irreversible and we cannot invert the TLM exactly, we denote our approximation of the inverse
of the TLM a "quasi-inverse". In section 3, we present numerical experiments that test the

accuracy of both the linear tangent model and of its quasi-inverse for the particular model used

in the present study. We have to address at least two questions: a) Is the linear evolution of the

analysis error in the TLM close to the evolution of the analysis error in the nonlinear model; and
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b) How accurate is the quasi-inverse linear sensitivity error, and in particular, what is the impact
on the quasi-inverse of the simplified physical processes, which cannot be integrated backwards?

3. The Accuracy of The Quasi-Inverse Linear Sensitivity for NCEP Global Spectral Model

3.1 The NCEP Global Spectral Model, its TLM and Adjoint

The nonlinear atmospheric model used in this study is a lower resolution version of the
operational NCEP global spectral model, with horizontal triangular truncation of T62 and 28
vertical sigma levels. This model is based on the primitive equations formulated with a spectral
discretization in the horizontal and an Arakawa quadratic conserving finite differencing in the

vertical (Sela 1980; Development Division staff 1988; Kanamitsu et al. 1991). In order to take

advantage of the spectral technique in the horizontal, a vorticity and divergence representation

of the momentum equations is used to eliminate the difficulties associated with the spectral

representation of vector quantities on a sphere. A semi-implicit time-integration scheme is
applied to the divergence, temperature, and surface pressure equations. The vorticity equations

are integrated explicitly except for zonal advection which is treated implicitly. The model has

a full set of physical parameterizations. New formulations of the cumulus convection and PBL
parameterization were recently implemented (Pan and Wu, 1995; Hong and Pan, 1995). The

model used in this study is the T62/L28 version of the T126/L28 operational model
implemented in January 1995, and also used in the ensemble forecasting system, and in the
NCEP/NCAR Reanalysis (Kalnay et al. 1996).

The tangent linear model is a simplified adiabatic version (Navon et al., 1992), but it

includes surface friction, horizontal diffusion and vertical mixing. With these dissipative

processes the TLM was shown to represent well the evolution of small perturbations in the

nonlinear model with full physics (Pu et al., 1995). The full nonlinear model was used in the

computation of the trajectory (basic state) used for all the linear and adjoint model integrations.
The adjoint model was developed from this tangent linear model.

3.2. Test of the Accuracy of the linear and Quasi-Inverse Models

Since the analysis errors are not known, we cannot use forecast errors to test the accuracy

of the quasi-inverse TLM method. Instead we chose arbitrarily two members of the operational
T62 ensemble forecasting system starting from 1200 UTC 28 February 1996 (Toth and Kalnay,

1993 & 1996) for which we know exactly both the initial and the 24 hour forecast differences.
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These known differences, which we can interpret as "errors", allow us to test the accuracy of
the quasi-inverse of the TLM and the success of the method in correcting initial errors.

The forward TLM has been shown in Pu et aL (1995), in the context of an adjoint sensitivity

study. They showed that the agreement between the perturbation field from the linear and
nonlinear integration is good and the results indicated that the dry adiabatic linear model with

surface friction and vertical diffusion can reproduce fairly well the nonlinear perturbations of
the model with full physics for short range forecast.

In order to test the accuracy of the quasi-inverse TLM: the 24-hour forecast difference
between the two ensemble forecast members (at 1200UTC 29 February 1996) was taken as the
initial condition for the inverse integration and the TLM was integrated backwards until the
corresponding initial time (1200UTC 28 February 1996) was reached, as discussed in Section
2. Fig. la illustrates the solution of this quasi-inverse, backward integration. It shows the linear

perturbation at the initial time for the temperature, u and v wind components at sigma level 13
(about 500mb). Fig. lb shows the corresponding exact differences between the two ensemble
members at forecast initial time. The two figures are in very good agreement, indicating that the

quasi-inverse method is successful in tracing back the forecast differences to the initial condition

differences in this case, at least above the lower boundary layer.
We also carried out the same experiments using the TLM without the diffusive terms, but

the results showed that both the forward TLM and the quasi-inverse TLM become unstable

without diffusion within a one-day integration, and therefore that these terms are needed to
maintain computational stability.

Finally, we then took the linear sensitivity perturbation obtained from the quasi-inverse
method (as in Fig.1), and integrated it forward 24 hours with the TLM. Fig. 2a shows the
obtained linear perturbation field at sigma level 13 (about 500mb), and the corresponding 24

hours fully nonlinear forecast difference is shown in Fig.2b. The agreement between the two
figures is still excellent, showing that the quasi-inverse is a good approximation of the true
inverse of the TLM.

We also compute an energy relative error measure of the combined quasi-inverse and
TLM integration:

ILL - (Mt (Xo+6Xo ) -Mt (Xo)) - (Mt (XO+X o ) -Mt (Xo ) ) III= (9)
IMt (Xo + 5Xo) -M (Xo) II

where the I, . denotes the kinetic energy norm(Buizza et al. 1993; also see (10) in section 5.1)
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Fig. 3 shows the vertical variation of the kinetic energy error ratio. There is a relatively large

error in the lowest layer (almost 25%), indicating the effect of the friction term, whose sign was
changed in the quasi-inverse TLM in order to maintain computational stability. For most of the
atmosphere, however, the combined linear and quasi-inverse procedure is accurate to better than

about 90% in the one-day sensitivity test. We also computed the errors using the total energy
norm, and the relative errors were very similar to those obtained using the kinetic energy norm

(Fig.3), indicating that the TLM and quasi-inverse maintain a state of quasigeostrophic balance.

4. Sensitivity of Forecast Error to Initial Conditions with Quasi-Linear Inverse Estimation

In the previous section we tested the accuracy of the linear and quasi-inverse

approximations by comparing them with known differences between nonlinear integrations. In

this section we test their ability to estimate errors and compare the linear and adjoint forecast.
sensitivity.

4.1 Quasi-Linear and adjointforecast sensitivity

We first tested the use of the quasi-inverse TLM to obtain improved initial conditions
starting from an arbitrarily chosen analysis corresponding to 0000 UTC 24 March 1995. The
one-day perceived forecast error field (analysis minus forecast at 0000 UTC 25 March 1995) is

used as an initial condition for the TLM backwards integration. Note that only one backward

integration is needed to obtain the TLM linear initial perturbation, and that, unlike the adjoint

sensitivity perturbation which provides the gradient of an error cost function, the results are not

dependent on either the choice of a norm, or on the amplitude that multiplies the gradient field.

In order to compare the inverse TLM estimation with the adjoint sensitivity, we

performed the experiment using the two methods for the same case. The adjoint method is used
as in Pu et al. (1995): a sensitivity initial perturbation minimizing the norm of the one day

forecast error. The minimization process is performed iteratively using a conjugate-gradient
method. Note that the cost of each adjoint iteration depends on the method used to estimate the

optimal step size. If the step size is fixed at a value appropriate for many different cases, as in

Rabier et al. (1996), the cost of each adjoint iteration is equivalent to about 2 times the cost of

the quasi-inverse TLM iteration. If an optimal value is determined for each case (Derber, 1987),

then each iteration is about 3 times as costly as the quasi-inverse total computation. In this
experiment we have followed the latter procedure.
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After one iteration of the adjoint method the initial error cost function was reduced by

about 20%, and after 5 iterations by about 50%. Fig. 4 shows the initial perturbation at 0000

UTC 24 March 1995 for the 500mb geopotential heights, obtained from one adjoint iteration
(Fig. 4a), 5 adjoint iterations (Fig. 4b), and the quasi-inverse TLM (Fig. 4c). The amplitudes of

the adjoint perturbations are considerably larger after 5 iterations than after one iteration, but

even larger for the quasi-inverse TLM perturbation (note that no zero line is plotted, and a larger

contour interval was used for the TLM perturbation). Close inspection of these fields reveals that

there are many areas of the world where the shape of the perturbations from the 5 iterations

adjoint and the inverse TLM methods is similar, although the amplitude of the latter tends to be

larger (e.g., SE Australia, SE of South America, Alaska, Asia N of India, and others). On the

other hand there are other areas where the shape of the 5 iterations adj oint and the inverse TLM

perturbation are quite different, and even areas where the shape of the 1 and 5 iterations adjoint

perturbations are also different. As will be discussed later, it is not surprising that different

perturbation patterns are obtained with the two methods, because the first iteration of the adjoint

method retrieves patterns corresponding only to the fastest growing singular vectors, whereas

the inverse TLM method recovers both growing and decaying vectors.

To assess the quality of the three different sensitivity perturbations, i.e., the extent to

which they capture the origins of the forecast errors, we performed nonlinear model integrations

from the corresponding perturbed (corrected) initial conditions to 0000 UTC 25 March 1995 and

compared them with the original unperturbed (control) forecast. Fig. 5 shows the one-day

forecast error (difference between the forecast and analysis field, at 0000 UTC 25 March 1995)

for the 500mb geopotential heights from these nonlinear model integrations starting from: a) the

control analysis without corrections; and the analyses corrected with the initial errors estimated

by b) the inverse TLM error estimation; c) the one-iteration adjoint sensitivity; and d) the 5-

iterations adjoint sensitivity. Since all the experiments made use of the one-day forecast error

of Fig. 5a, it is not surprising that they all have achieved a reduction in the one-day error, which

was the original goal. It is clear from the figure that one iteration of the adjoint sensitivity

method succeeds in improving the forecast error with respect to the control, and that 5 iterations
are much better than a single adjoint iteration, but that the inverse TLM method gives by far the

best results. A comparison of other fields (not shown) yields a similar conclusion.

Fig. 6 shows a vertical east-west vertical cross-section at 400 N of the height forecast

error field for the control and the three improved initial conditions. It also indicates that the

results from the linear sensitivity are substantially better than those of the adjoint method, even

after 5 iterations. An examination of the structure of the error indicates that the quasi-inverse
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linear TLM perturbation reduces very substantially the original forecast error everywhere except
at a few spots near the top of the model where the TLM may have problems associated with very
fast growing modes (Kalnay and Toth, 1994). The adjoint perturbations are able to reduce the
forecast error in some areas, but they actually increase significantly the original error in other
areas (e.g., near 150E a very large new error structure is introduced with the one iteration adjoint

perturbation, and only partially removed by the 5 iterations perturbation). Similar results were
observed for the wind forecasts (not shown). The reasons for this error may be due to the adjoint
sensitivity method itself: As shown by Rabier et al. (1996), the first iteration in the sensitivity

patterns is strongly related to the fastest growing singular vectors, each of which grows during

both the backward (adjoint) and the forward integration, so that they appear with amplitudes

proportional to the square of their growth rate. On the other hand, within the adjoint method,
which provides the gradient of the cost function, a single optimal step size must be chosen,
which Rabier et al. selected to optimize the reduction of error corresponding to the fastest

growing singular vector. The use of a single optimal step size cannot be optimal for all the

dominant singular vectors, and therefore may lead to reduction of errors for some singular
vectors but to an increase for others. The adjoint sensitivity will depend on the definition of the
function and minimization technique.

Since the one-day analysis is only an estimate of the true state of the atmosphere, and the
perceived one-day error was used in these calculations, it is necessary to make longer forecasts

to test whether the apparent improvement in the forecast error is really meaningful.

4.2 Impact of sensitivity perturbations on medium-range forecasts

A medium-range weather forecast was performed from each of the perturbed initial
conditions discussed above. Table 1 compares the 1 through 5 days sensitivity with the control
forecasts' 500mb heights anomaly correlation scores, verified against the corresponding analysis
fields. We find that the sensitivity forecasts not only improve the 24-hours forecast, but also
improve the rest of the 5-day forecasts. The quasi-inverse TLM estimation results in the best
forecasts, although, with 5 iterations, the adjoint sensitivity is close to it, especially in the
Southern Hemisphere, where analysis errors are larger, and therefore the perceived forecast error
may be less reliable. The impact of the analysis errors on the perceived 24-hr forecast errors is

probably the reason why the forecast improvements introduced by the TLM are equivalent to

about 36 hr in the NH, and only about 12 hr in the SH. The results are similar for the 5-iterations
adjoint correction, but note that each adjoint iteration requires about 2-3 times the computations
required by the TLM in total.
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4.3 Improvements in original forecast quality from the sensitivity perturbation

In order to further test the impact of TLM inverse estimation and to compare the method

with adjoint approach, 14 consecutive cases from 00UTC 18 March 1995 to OOUTC 31 March
1995, were chosen for a comparison. For each case, we use the one-day forecast error at OOUTC

to trace back the error in initial condition at OOUTC the day before by quasi-inverse TLM

estimation and by the adjoint method. As in Rabier et al. (1995) and in Pu et al. (1995) we

performed only one iteration for the adjoint method in order to minimize the computational cost.

The 5-day forecasts starting from linear sensitivity initial conditions and from the sensitivity of
one iteration adjoint method were compared with the original control forecast. Fig. 7a shows

the anomaly correlation scores verified against the corresponding control analysis for 500mb

geopotential heights in the extratropics (20° -80°), and Fig. 7b shows the root-mean-square error
for 200mb and 850mb wind speed for tropical area (200 N - 20° S). The results show that in the
extratropics the linear estimation method improves the original forecast in all but one case in

each hemisphere, and is also better than the one iteration adjoint sensitivity forecast in all but
7 of the 28 cases. In the tropics, the adjoint forecast tends to be close to the control, because
tropical perturbations tend to be slowly growing, and therefore do not dominate the adjoint

perturbation (see Figs. 1-5), and the quasi-inverse TLM perturbation provides the best forecast

in the majority of cases.

5. Characteristics of the different sensitivity perturbations

5.1 Total and Kinetic Energy

In section 3, the amplitude of the initial sensitivity perturbation from quasi-inverse TLM

estimation was compared with both 1 and 5 iterations adjoint initial sensitivity perturbation for

500mb geopotential heights field. In this section, we compare the amplitude of the different

initial perturbations at different vertical sigma levels. An energy norm, defined as following is

used to measure the amplitude of initial perturbations:

E= f (VA/VA +VA1 DVA'D+RaT(lnI) 2+ PT2) dE ap)drl (10)
0 a Tr(0

where {, D, T, and II stand for the perturbations of vorticity, divergence, temperature and surface

pressure. q is the vertical coordinate, Tr is a reference temperature and Rp, C are
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thermodynamic constants. Here E is the total energy norm, and the first two terms in parenthesis
are the rotational and the divergent part of the kinetic energy norm.

Fig.8a shows the vertical cross section of the total energy norm and Fig. 8b the kinetic
energy norm for the initial perturbation. It indicated that the magnitude of TLM sensitivity
perturbation is the largest at all sigma levels. The patterns of three curves are very similar,
showing the maximum amplitude at mid levels. Note that another large change of kinetic energy
appears at the lowest level for the quasi-inverse TLM estimation, presumably due to the
inaccuracy of the quasi-inverse at this levels, where the surface friction is most important, and
its sign has been changed for computational reasons. The one-iteration adjoint does not show
this effect, but the 5 iterations adjoint has also a substantial increase in both kinetic and total
energy near the surface, which may be a result of the poor physics of the TLM and its adjoint.

5.2 Fit oftheperturbed initial conditions and forecasts to rawinsondes

The RMS fit and bias of both temperature (in K) and vector winds (in m/sec) against
rawinsonde data are presented in Fig. 9. In each figure, the curves on the left represent the bias,
and the curves on the right the rms difference; the dashed curves indicate the fit of the control
forecast, and the solid curves the fit of the perturbed forecast. Fig. 9a presents the results for the
initial time, and Fig. 9b for the 24 hr forecast, for both the tropics and the NH extratropics (the
results for the SH, not shown are similar to those of the NH).

In the tropics, the adjoint method introduces negligible initial differences, even after 5
iterations. The quasi-inverse linear perturbations slightly improve the bias in the temperatures
and winds, but result in a significantly worst fit to the data compared to the control analysis, by
about 0.1K and lm/sec in the temperature and wind respectively. In the extratropics, a single
adjoint iteration produces very small changes in the mid troposphere, and essentially no changes
in the winds. After 5 iterations, the adjoint sensitivity increases by up to 0.4K the fit to the data

in the lower troposphere and changes in the wind of the order of 0.Sm/sec but only below
700hPa. The effect of the quasi-inverse linear sensitivity on the initial bias and rms fit in the
extratropics is similar to that observed in the tropics. It should not be surprising that the
perturbed initial conditions tend to fit the data worse than the control analysis, which by
definition tries to optimally fit the data and the first guess.

After 24hr the perturbed forecasts are better than the control forecasts in both the tropics
and the extratropics, except for the 1-iteration adjoint, which fits the winds worse than the
control in the low levels of the extratropics. The improvement after 5 adjoint iterations is larger
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than after one iteration, but the TLM improvement is comparable or larger. This relationship is

maintained after 3 and 5 days (not shown). The improvement in the bias is also better for the

quasi-inverse linear sensitivity forecast than for the adjoint forecast.

Checks of the fit of the initial conditions and forecasts against other data (aircraft reports,

cloud track winds, satellite temperature soundings and surface reports) gave similar results: the
linear sensitivity perturbation resulted in a fit to the data worse than the control analysis (which

is designed to fit the data well), but the corresponding forecasts resulted in better fit to the data
than either the control or the adjoint sensitivity forecasts.

5.3 Sensitivity corrections andforecast error

We now consider the evolution of the changes in the initial condition introduced by the
sensitivity patterns, and how they improve the nonlinear forecast with respect to the control. This
is done by measuring how parallel is the sensitivity correlation to the control error. We define

as X=A(analysis)-C(control forecast) the perceived control forecast error, and Y=S (sensitivity

forecast)-C is the sensitivity forecast correction. The angle between them is (e.g., Gill et al.

1981)

a=cos-l (X,y) (11)
IIXII IIYII

where (,) denotes an inner product, and I[ II is an Euclidian 12 -norm, in this case the total energy.
If the sensitivity perturbations were able to perfectly correct the forecast, the sensitivity forecast

correction would remain parallel to the control forecast error.

Fig.10 shows the variation of the angles with the forecast day. Note that at t=0, the

perceived control forecast error is zero, so that the corrections cannot be compared. At 24 hour
the quasi-inverse sensitivity correction is much more parallel to the control error than the adjoint

1 and 5 iteration sensitivity corrections. The advantage for the quasi-inverse method remains

clear for the first two days, but then the angle increases quickly and, by day 5, it is close to the
angle between the adjoint sensitivity forecast error and control error. The advantage of the

quasi-inverse method may be explained by the fact that its perturbation includes all components

of the error, both growing and decaying, as does the real forecast error, and therefore the

correction and the error are more parallel. The adjoint sensitivity perturbations, as shown in
Fig.10, on the other hand, contain only corrections in the fast growing errors, and are therefore
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less parallel to the total error. After the first day or two, the growing errors dominate the total

forecast error, and the advantages of the quasi-inverse linear procedure becomes less dominant.

Since the quasi-inverse linear sensitivity recovers both growing and decaying errors in the initial

conditions, and the adjoint sensitivity recovers only the fastest growing errors, it is not surprising

that the amplitude of linear initial sensitivity perturbation is significantly larger than the adjoint

sensitivity perturbation (Figs. 8 and 9).

5.4 Sensiivity patterns, bred vectors and singular vectors

To further interpret the different sensitivity perturbations, let us look at formula (8) again.

We will show that the perturbation obtained by the quasi-inverse linear method is strongly
related to the bred (Lyapunov) vectors, wheras the perturbations obtained by the one-iteration

adjoint are related to the singular vectors (as shown by Rabier et al., 1994). The quasi-inverse

linear method attempts to find the initial perturbation 6Xo that inverts the following equation:

L X0 =6Xt, (12)

where the rhs of (12) is the perceived error at time t (24 hr in our experiments):

6Xt=Xt- M(X 0) (13)

The adjoint method tries to find the initial perturbation bX0 that maximizes the reduction

of the error energy at time t, given by 8Xt oXt. From (12), we have

6X0*L' L6XO = 6Xt'6X. (14)

If we expand any perturbation onto the basis formed by the singular vectors (eigenvectors

of L* L, with eigenvalues oi2>0)

aXo= : i Vi (0) (15)

Replacing (15) into (14), it is clear that if the error at time t is white, and projects equally onto

all the singular vectors, the perturbation that will result in the maximum reduction of the rhs of

(14) is the first singular vector vi(0), which grows during the interval 0-t by a factor of Ol2, a

growth larger than that of any other perturbation. For this reason, as pointed out by Rabier et

al. (1996), the gradient of the cost function (error energy) computed by one iteration of the
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adjoint method is dominated by the leading singular vectors, and the structure of the adjoint

sensitivity pattern is also very similar to that of the leading singular vectors, which are used at

ECMWF as initial perturbations in their ensemble forecasting system (Molteni et al. 1996).

When the adjoint scheme is iterated, it should eventually converge (like the quasi-inverse

method) to the exact solution of (12), and, if the linearity assumption is valid, to the solution of

the nonlinear error equation (4).

The quasi-inverse perturbations are also somewhat related to perturbations used for

ensemble forecasting. These are the "bred" or local Lyapunov vectors used as initial

perturbations in the ensemble forecast system implemented at NCEP in 1992 (Toth and Kalnay,

1993 & 1996). In the NCEP ensemble forecasting system, the breeding method used to

generate perturbations simulates the development of growing errors in the analysis cycle. The

perturbations are obtained as the vector difference between two nonlinear forecasts. This

difference is carried forward upon the evolving atmospheric analysis field, and scaled down at

regular intervals. As long as their amplitude remains small, the bred or local Lyapunov vectors

generated by the difference between two nonlinear forecasts can be considered as the result of
a forward integration of the TLM as in (12). Therefore, to the extent that forecast errors at time

t are dominated by growing errors (leading local Lyapunov vectors), the inverse method will

result in the Lyapunov vectors at time t=0. Of course, in addition to these vectors, there are
decaying vectors as well in the analysis error. These decaying errors, when integrated

backwards, will result in larger amplitudes at the initial time than at the final time.

6. Possible improvement of future forecast skill using sensitivity perturbations

Our results showed that the linear sensitivity patterns can improve substantially the

original forecast, even beyond the period for which the error was computed (section 3). But a

crucial question for the operational practice is whether we can use this procedure to improve the

skill of future forecasts. For possible operational applications, we should compare the sensitivity
forecast with the regular forecast from latest initial conditions. This means, in our experiments,

that we should compare the 5-day sensitivity forecast scores with the 4-day forecast from the

original analysis field, since the one day analysis data needed for the computation of the

sensitivity perturbation introduced a one-day delay. Fig. 11 compares the anomaly correlation

scores for 500mb geopotential heights, and shows that, although the 5-day sensitivity forecast

is much better that the original 5-day control forecast, it is still worse than the corresponding 4-

day control forecast in most cases. The same results were also obtained by using the adjoint

sensitivity perturbation (Pu et al. 1995, Rabier et al. 1996). This result suggests that the latest

17



control forecast, based on the NCEP analysis-forecast cycle, makes better use of the data

available every 6 hours, than the sensitivity forecasts which are one day longer and only use the

information present in the latest analysis. However, the fact that the sensitivity 5-day forecasts

are better than the original 5-day forecasts also indicates that they start from a better initial

analysis than the control 5-day forecast. In order to improve the future forecast skill, Pu et al.

(1995) suggested a technique that takes advantage of both the better starting point for the 5-day

forecast provided by the sensitivity analyses, and of the use of the data in the latest day by the
analysis-forecast cycle. This technique referred to as "iterated cycle" can be described as

follows: a) at 0000OUTC today, calculate sensitivity perturbation for initial condition at one-day-

ago (t=-24 hour) from the present (today) one-day forecast error. b) Adjust the one-day-old (t=-
24 hour) initial condition by using the sensitivity perturbation. c) Using this adjusted new (and

presumably better) initial condition at t=-24 hour as a starting point, repeat the NCEP 3-

dimensional analysis system SSI cycle every 6 hours, until the present time (OOOOUTC today)

is reached, so that a new analysis field is obtained for today. d) Perform the medium range

weather forecast from this new obtained analysis field. Following this procedure, Pu et al.

showed that the itrated cycle with adjoint sensitivity perturbations was an improvement of the

future forecast skill: the medium range forecast from the iterated cycle was better then original

corresponding forecast. In a similar way, we now perform an iterated cycle by using the quasi-

inverse TLM sensitivity perturbation. As can be seen from Fig.11, the new 4-day forecasts from

this iterated cycle are better than the corresponding control forecasting in several cases. Fig.

12 shows the 14 cases average of forecast anomaly correlation scores which verified against the

control forecast for 1-5-day forecast 500mb geopotential heights. The iterated cycle leads to a
small improvement in the medium range weather forecasts, especially in Southern Hemisphere,

indicating that it might be possible to use the quasi-inverse TLM sensitivity perturbation to

improve future forecast skill.

7. Summary and Discussion

We have presented a quasi-inverse linear method to study the sensitivity forecast errors

to initial conditions for the NCEP global spectral model. The inverse is approximated by running

the tangent linear model (TLM) of the nonlinear forecast model with a negative time step, but

reversing the sign of friction and diffusion terms. This avoids the computational instability that

would be associated with these terms if they were run backwards. As done using the adjoint

model integrations, we started the quasi-inverse TLM at the time of the verified forecast error

and integrated backwards to the corresponding initial time. However, instead of minimizing

an error cost function through successive iterations, as done with the adjoint sensitivity method,
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the quasi-inverse linear sensitivity is obtained by a single, deterministic integration. This has

the advantage that it is faster, and does not depend on the choice of the norm used in the

definition of the error cost function.

A numerical experiment performed using a known perturbation from the NCEP
ensemble, shows that this quasi-inverse linear estimation is able to trace back the differences

between two perturbed nonlinear one-day forecasts, and recover with good accuracy the known

difference between the two forecasts at the initial time. The results show that both the linear

estimation and the quasi-inverse linear estimation are quite close to the nonlinear evolution of

the perturbation in the nonlinear forecast model, suggesting that we should be able to apply the

method to study of the sensitivity of forecast errors to initial conditions.

We then perform experiments tracing back actual forecast errors. We calculate the

perturbation field at the initial time (linear sensitivity perturbation) by using perceived one-day

forecast errors as initial conditions for a backward integration using the quasi-inverse TLM. As

could be expected from the previous experiments, when the estimated error is subtracted from

the original analysis, the new initial conditions lead to an almost perfect one-day forecast. The

forecasts beyond day one are also considerably improved, indicating that the initial conditions

have indeed been improved.

We then compare the quasi-inverse linear sensitivity method is with the adjoint sensitivity

method (Rabier et al. 1996; Pu et al. 1995) for medium range weather forecasting. We find that

although both methods are able to trace back the forecast error to sensitivity perturbations which

improve the initial conditions, the forecast improvement obtained by the quasi-inverse linear

method is considerably better than that obtained with a single adjoint iteration, and similar to the

one obtained using 5 iterations of the adjoint method. This is true even though each adjoint

iteration requires at least twice the computer resources of the inverse TLM estimation. As

indicated above, the quasi-inverse TLM estimation method does not depend on the definition

of a norm, it does not require the estimation of an optimal step size, and it provides an optimal

correction throughout the globe.

We point out that (as shown by Rabier et al. 1996) that the adjoint forecast sensitivities

are closely related to singular vectors. In fact, the adjoint sensitivities show several

characteristics also observed in the singular vector behaviour (Szunyogh et al. 1996). In the

initial perturbations, the wind perturbations are rather small compared to the temperature

perturbations, and they are maximum at relatively low levels. After one day, however, the
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maximum wind of the adjoint perturbations grow and are observed closer to the tropopause

levels.

The quasi-inverse linear sensitivities are also related to ensemble perturbations, the bred

(Lyapunov) vectors used for ensemble forecasting at NCEP (Toth and Kalnay 1993). If the final

error is a Lyapunov vector, the inverse method will also yield an exact Lyapunov vector (except

for the effect of changed sign in the dissipative terms). However, since the analysis errors

contain also decaying errors, these will be magnified during the backward integration. This is

one of the reasons why the quasi-inverse perturbations are much larger than those obtained with

the adjoint method.

Finally, the possibility of the use of the sensitivity perturbation to improve future forecast

skill is discussed, and preliminary experiments encourage us to further test this rather

inexpensive method for possible operational use. Although the results are somewhat positive,

this method would have to address the problem that the data is effectively used twice, and the

inverse method introduces perturbations in essentially all degrees of freedom in the model,

whereas the iterated analysis using adjoint perturbation method (Pu et al. 1995), only introduced

changes into a few degrees of freedom (the leading singular vectors).
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Figure Captions

Fig.la the initial perturbation for temperature and wind field at sigma level 13 (about

500mb), calculated from the 24-hour forecast differences between two ensemble

members by using the quasi-inverse TLM method.

Fig.lb Same as Fig.1l, except the real difference between the two ensemble initial

conditions.

Fig.2a 24-hour linear evolution of quasi-inverse linear sensitivity initial perturbation

Fig.2b 24-hour forecast differences between the two ensemble members.

Fig.3 The variation of the energy relative error with the vertical level.

Fig.4 Sensitivity perturbation for 500mb geopotential heights. a) from one iteration of

adjoint method. b). from five iterations of adjoint method, and c) from quasi-inverse
linear estimation. The contour interval is 2.5m for adjoint sensitivity but 10 m for

linear sensitivity.

Fig.5 24 hours forecast geopotential heights error for 500mb from the different sensitivity

initial condition. a) for control forecast; b) for quasi-inverse linear estimation.

c) for one iteration adjoint; d). for 5 iterations adjoint; The forecast started from

0000UTC 24 March 1995.

Fig.6 Same as Fig.5. Except for a west-east vertical cross section at 400 N.

Fig.7a 5-day forecast anomaly correlation scores for 500mb geopotential heights. For

control forecast (solid line), sensitivity forecast from adjoint one iteration (short
dashed line) and sensitivity forecast from inverse linear estimation (long dashed
line). Dates on the horizontal axis denote the starting dates of forecasts.

Fig.7b 5-day forecast Root-Mean-Square error for 850mb and 200mb wind speed. For

control forecast (solid line), sensitivity forecast from adjoint one iteration (short

dashed line) and sensitivity forecast from inverse linear estimation (long dashed
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line). Dates on the horizontal axis denote the starting dates of forecasts.

Fig.8 The vertical cross section of the total energy norm (a) and kinetic energy norm

(b) for sensitivity initial perturbation, of one iteration adjoint (solid), 5 iterations
adjoint (long dashed line) and inverse linear estimation (short dashed line).

Fig.9 The Root-Mean-Square error of the sensitivity and forecast field fit the rawinsondes

(observations) data. In each plot, the left two curves represent the bias, the right two
curves represent the RMS error. dashed line for the control field and solid line for
the sensitivity field. The vertical axis denotes the pressure. (I).Adjoint one iteration
(II). Adjoint 5 iteration (III). Quasi-inverse TLM

(a). For sensitivity initial condition. (b). For one-day sensitivity forecast

Fig.10 The angle between forecast error and correction by sensitivity forecast. For one

iteration adjoint (long dashed line), 5 iterations adjoint (short dashed line) and
quasi-inverse linear estimation (solid).

Fig.11 The anomaly correlation scores for 500mb geopotential heights, for 5-day

sensitivity forecast, corresponding 4-day control (operational) forecast, 5-day
control forecast and for the 4-day forecast from the new cycle (iterated). Dates
(March of 1995) on the horizontal axis denote the starting dates of forecasts.

Fig.12 Comparison of the average anomaly correlation scores of 1-5-day forecast for

500mb geopotential height between the iterated cycle (dashed) and control forecast
(solid). Starting dates of the forecasts ranged from 18 March 1995 to 31
March 1995.

Table Captions

Table.1 Comparison of the 1-5-day forecast anomaly correlation scores for geopotential

height (1-20 waves, from OOOOUTC 24 March 1995)
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Table. 1 Comparison of The Forecast Anomaly Correlation Scores for Geopotential
Height Field (1-20 waves, from OOOOUTC 24 March 1995)

Northern Hemisphere 500mb Southern Hemisphere 500mb

Day Control Adjoint Adjoint TLM Control Ad'oint Adjoint TLM
1 iter. 5 iter. 1 ier. 5 iter.

1 0.9887 0.9933 0.9953 0.9964 0.9804 0.9884 0.9903 0.9953

2 0.9649 0.9724 0.9823 0.9831 0.9516 0.9595 0.9712 0.9702

3 0.9286 0.9462 0.9656 0.9776 0.9119 0.9316 0.9413 0.9348

4 0.8800 0.9058 0.9449 0.9559 0.8471 0.8687 0.8960 0.8820

5 0.8520 0.8437 0.8988 0.8998 0.7691 0.7514 0.7860 0.7980


