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ABSTRACT

An economical advection scheme with linear high order

accuracy is described. A splitting technique is used to solve

the equations of a barotropic model. The horizontal advection

process is integrated by a quasi-Lagrangian technique which uses

cubic splines and deviates from past work by not employing the

upstream method. The adjustment process is integrated with a

forward-backward scheme.

The application of this numerical method to a regional

barotropic model shows that it can take full advantage of the

splitting method by allowing a long time step for advection while

maintaining high accuracy through the use of a cubic spline

interpolation line (row) by line (row).

Two approaches to the treatment of lateral boundary

conditions and alternate schemes for the calculation of the

adjustment process are discussed.

____-_________________________________-_____

* Visiting scientist from the Sichuan Province Weather
Bureau, The People's Republic of China.



1. INTRODUCTION

From the 1970's the quasi-Lagrangian method has come

into use again ( Purnell 1976; Mahrer 1978; Mathur 1979,1983;

Robert 1981, 1982; Bates and McDonald 1982; Bates 1984 ).

Investigations of the properties of various quasi-Lagrangian

advection schemes have been given by Crowley (1968), Purnell

(1976), Long and Pepper (1981). The upstream numerical scheme

is most often used in quasi-Lagrangian models, because it

makes possible interpolation from grid points to an intermediate

point and permits the use of longer time steps than many other

schemes.

In principle, one may improve the accuracy of the

quasi-Lagrangian computation through the use of a convergent

sequence of iterations. The length of the time step and the

number of iterations must be balanced with the computational

cost and attained accuracy. We attempted some experiments in

this manner, but found that not all iteration sequences are,

in fact, convergent. This experience led us to the use of a

splitting method and the numerical technique reported in this

paper.

When a splitting scheme is chosen, a calculation of

the effects of different physical factors, one at a time, usually



leads to an increase in the truncation error. But if the time

step for the advection process is not too long, the truncation

error is not significant. In fact, for a regional model using

a splitting, quasi-Lagrangian method, the time step should not be

too long because the properties of a particle could not be com-

puted. The reason is both numerical and physical. If the time

step for the advection process is excessive, first, for a regional

model the position of a particle near the inflow boundary one time

step ago could be too far outside the region; second,in the quasi-

Lagrangian advection scheme it is possible that two or more par-

ticles which have different initial values arrive at the position

at the same time, but there can only be one value and the point

of origin can be completely miscalculated, as, for example, in

the case of very strong distortion field.

Section 2 of this paper discussed the basic form of an

algorithm for a quasi-Lagrangian method that uses a cubic spline

interpolation with a downstream scheme. Section 3 and 4 present

adjustment process schemes and methods for handling lateral boun-

dary conditions, that have been considered. In section 5, a 48

hour forecast from a barotropic model is compared with the

analysis fields.

2. THE ADVECTION SCHEME



Our choice of the splitting technique is partially

motivated by the desire to avoid iteration for high interpolation

accuracy. The solution to the governing equations (1) is divided

into two main stages: the adjustment stage (2) and the advection

stages (3)
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This section will be devoted to the solution of (3); the adjust-

ment scheme will be discussed in section 3.



We use a downstream quasi-Lagrangian method with cubic

spline interpolation as an advection scheme for the advection

stage (3). Integrating over the trajectory of a particle which

comes from a grid point (i,j) at time nAt and arrives at a

point P at time (n+l)At, we have

A( iAx + uAt, jay + vat, (n+l).t )

= A( iAx, jay, nat ) . (4)

Where A is a property of the fluid which satisfies (3), and the

value A( iAx, jay, (n+l)At ) can be estimated from interpolation.

(iAx,jay, nAt)

(n+l)At)

Fig. 1



For a regional model, as the reason mentioned in

section 1, the following approximate limitation of time step

should be introduced

Umax & t/AX < b (5)

Where Umax is maximum wind speed, At is time step; A x is grid

interval; b is a constant which depends upon advection difference

scheme and a requirement of boundary scheme. For an Eulerian

difference scheme the value of b should be 1.0 and for a quasi-

Lagrangian method it can be greater than 1.0. The requirement

of boundary means that, if there is no buffer zone between boun-

dary and internal area, the value of b should be 1.0.

The one dimensional cubic spline interpolation formulas

are

I 
f(x1 ) = f(x) -(.x - x ) [ 2(x;- x) + h ]

+ f(x.+ ) (X - x-) [2(x. -x) + h.]
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m(x 1 ) = 0
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Where x. is an interpolated point, xjE [xx ,x.,, ]; h.= x.+ - x ;
I Xi j~~~~3 a 4+

f(xi) is a interpolated value at the grid point x; ; j and i are

subscript of data points (the following parcel points) and inter-

polated points (the following grid points) respectively. Since ha

(j = 1,..n-l) can be different from each other, it enables inter-

polation from irregular points to regular points. (7) is a

tridiagonal system and requires the function at all data points

for any interpolated point. If a cubic spline interpolation with

downstream quasi-Lagrangian method is used and if there is a

relationship between locations of parcel points and grid points,

(6) can be run for a whole line. It will then be possible to save

computer time greatly.

A relationship between the parcel points and the grid

points ( interpolated points ) for downstream quasi-Lagrangian



advection scheme is very clear in the case of b=l. If u(inx, nAt)

> 0, the ith grid point is located between (j-l)th parcel point

and jth parcel point which were located at (i-l)th grid point

and ith grid point at the time nat respectively. Otherwise,

(i.e. u<O) the ith grid point should located between the jth par-

cel point and (j+l)th parcel point which were located at the ith

grid point and (i+l)th grid point at the time nAt respec-

tively (Fig. 2).

j-l j j+l

(a) ---*-+----------+------- *--+--*----> x
i-l i i+l

j-l j j+l

(b) ---*-+--*-------+----------+---- *--> x
i-1 i i+l

Fig. 2 (a) u i > 0, (b) u i < 0

* notes position of ith particle at (n+l)At
+ notes position of ith particle at nat

Since in (6) X(E [X ,X+; ], we have the relationship

j = i-l when u; > 0

j = i U < 0 . (8.a)



In the case of b = 2 (Fig. 3), it is not difficult to find the

relationship. They are

j-2 j-1 j j+l j+2

(a) - -- + *----*.-*+ …-*-+… . .*-
i-2 i-1 i i+1 i+2

j-1 j j+l j+2

(b) --+*----*-+---*---+ … ……__ *- -- +__
i-2 i-l i i+1 i+2

Fig.3 (a) u i >
(b) u i <

* and +

u i > 0:
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u;_ > Umax /b
uj_, < -Umax /b

when ui-,

U{_ui-'

when U 

Iu,+,l

< Umax /b

> Umax /b

< Umax /b

> Umax /b

As stated above, j is the subscript of parcel points at the time

(n+l)At, to which the particles have come from the corresponding

grid point. In order to maintain the monotone order of parcel

points, the above limitation of time step (5) should be changed

into

(8.b)



Umax t/Ax 5 (b - e) ,

where e is a constant (0.0 - b/2) that accounts for the strongest

horizontal wind shear. In synoptic scale or meso-a scale systems

there is not a very strong shear in horizontal wind field. So the

value of e usually is very small.

Obviously, two dimensional cubic spline interpolation

is more complex than one dimensional. After employing the

splitting technique in different physical processes of a

barotropic model, the advection scheme with upstream quasi-

Lagrangian method, which uses two dimensional cubic spline

interpolation, has the linear 4th order accuracy (Crowley 1968).

But, as mentioned before, this scheme needs much more computer

time, thus, an advection scheme which requires less computer time

and does not lose too much accuracy is needed.

SCHEME A: this scheme consists of two main steps: (1)

after choosing two parcel points, which are close to the ith

column and located on each side of ith column, two point inter-

polation is used to calculate the position of the interpolated

point at the ith column and value at this point; (2) one dimen-

sional cubic spline interpolation is used in y-direction.

The advection scheme

(9)

( splitting scheme )SCHEME B:



is constructed following Marchuk's method which means the

advection in x-direction is followed by that in y-direction.

It is very clear that this scheme with cublic spline inter-

polation can save much more computer time than the upstream

quasi-Lagrangian method with two dimensional cubic spline inter-

polation. But, it would introduce a new truncation error which

depends closely on the advection time step.

SCHEME C: ( upstream scheme ) The upstream quasi-

Lagrangian method with two dimensional cubic spline interpolation

is used as an advection scheme.

Fig. 4, 5 and 6 show 12-48 hour forecasts of a baro-

tropic model, in which the scheme A, scheme B and scheme C are

used as advection schemes respectively. The model uses 30 minutes

as the advection time step and 7.5 minutes as the adjustment time

step. This choice and other considerations will be described in

section 5. Meanwhile, Fig. 7 shows the verifying 500 mb geopoten-

tial analysis fields. Comparing Fig. 4, 5, 6 with Fig. 7 , it is

very clear that the intensities of synoptic systemes of 12-48

hour forecasts using scheme A are weaker than that forecasted by

scheme B or scheme C. The forecasts using scheme B is very simi-

lar with that forecasted by using scheme C. We conclude that

these results are caused by the fact that scheme A has lower ac-



curacy than the others, and that scheme B has the same accuracy

as scheme C.

Fig. 8, 9 and Fig.10 show 12-48 hour forecasts of a

barotropic model in which schemes A, B, C are used respectively.

The difference between Fig.4, 5, 6 and Fig. 8, 9, 10 is the time

step. Here the advection time step is 45 minutes and the adjust-

ment time step is 11.25 minutes. These forecasts are very simi-

lar and show that noise appears in the subtropic area of all fore-

casts. Since in the scheme C the splitting technique was not

used, this result indicates that truncation error is caused by

choosing an unsuitable advection time step for splitting differ-

ent physical processes. This means that when we use the split-

ting technique with a suitable time step in different physical

processes of a barotropic model, using a downstream splitting ad-

vection scheme with one dimensional cubic spline interpolation

does not differ much from using upstream advection scheme with the

two dimensional cubic spline interpolation (nonsplitting scheme).

Table 1 shows the CPU time ( on NAS 9000 ) of the advec-

tion part of a 48 hour forecast for different advection schemes.

It indicates that scheme B uses only half as much CPU time as the

upstream scheme. Since a vector operation can be used in scheme B,

it can save much more computer time than the upstream scheme.



Table 1 CPU TIME (on NAS 9000, unit: second)

SCHEME CPU TIME

Scheme A 44.1079
_____-___-____________________________________

Scheme B 47.6701
____-__-______________________________________

Upstream Scheme 86.4311

Table 2 and Table 3 show the evolution of ratio of

kinetic energy K, potential energy P and total energy (K+P) du-

ring 48 hour integrations using scheme B and scheme C as the ad-

vection scheme (with advection time step 30 minutes) respectively.

K0 and P0 are the kinetic energy and potential energy at t=0.

Table 2 (splitting scheme)

Time of K/ P/ (K+P)/
FCST /K0 /P0 /(KO+PO)

____________________________________________

0 1 1 1
____________________________________________

12 0.986591 0.998939 0.996771
____________________________________________

24 0.983330 0.999340 0.996350
____________________________________________

36 0.990215 0.998869 0.997351

______48 0.979836 1.000204 0.996630_
48 0.979836 1.000204 0.996630

Both Tables show that the loss of about 0.015 of



kinetic energy during the first 12 hours quickly levels off. The

potential energy remains constant and is very nearly conserved.

Table 3 (upstream scheme)

Time of K/ P/ (K+P)/
FCST /K0 /P0 /(KO+PO)

_____________________________________________
0 1 1 1

_____________________________________________
12 0.984586 0.998926 0.996410

_____________________________________________
24 0.978577 0.999296 0.995660

_____-_________________________________-_-___
36 0.982508 0.998809 0.995949

_____________________________________________
48 0.970113 1.000093 0.994834

3. THE ADJUSTMENT SCHEMES

In selecting an integration scheme for the adjustment

process, we still put emphasis on high accuracy and less time

consumption. In this paper a two time-level scheme, and a

forward-backward scheme are compared.

A. Two-Time-Level Scheme

The two time-level scheme is, strictly speaking, a

Eulerian scheme but is quite similar to a second-order advection

scheme. We use" *" to mark the position of the point and the



value of variables at the first-time level. In the two-time level

scheme u*, v* and *

shown in Fig. 11. The

are

are calculated at the same point which is

difference equations corresponding to that
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where A , A*, A are the value of variable A at the time nat,--_y -xy
(n+1/2)At, and (n+l)Lt respectively; A , A , A show that

the average value of variable A is at x-direction, y-direction,

and both directions respectively; Ax (A>) is the difference

of variable A at x direction (y direction); At is time step;

m is the map factor and f = 2 Siny

B. Foreward-Backward Adjustment Scheme

Since the foreward-backward scheme allows a time step

which is twice as long as that of the leapfrog scheme and is very

convenient, many authors use this technique for the adjustment

scheme in their models ( Gadd, 1978; Bates and McDonald, 1982 ).

The difference equations are

n WHN 
1, = <3-.At. [ (-2) + (-m-) ].i~~~~~~~~4 n~

vn

|U= u -At( m ).* f v );At (ll.a)

vi) = ~t -At ( m 'P ), - ( f u ); At

If we want to obtain a stronger dissipation the following

equations can be used,



Anl pfj- At ( man ;,[(")J+(-)y]a

n

u = u.- At( m5 + f [ v -At ( mt + f u ) /2 ] t

v= v'. -At( mcv),) - f U[. -At mq< - f V /2 t

(11.b)

Table 4 and Table 2 show the evolution of ratio of

kinetic energy, potential energy and total energy during the 48

hour integration using the two-time level adjustment scheme and

the forward-backward adjustment scheme respectively, where K0 and

P0 are the kinetic energy and potential energy at t=0.

Table 4 (two-time level scheme)

Time of K/ P/ (K+P)/
FCST /K0 /PO /(K0+P0)

_________________________________________________
0 1 1 1

_________________________________________________
12 0.985673 0.998827 0.996519

_________________________________________________
24 0.983074 0.999290 0.996444

36 0.988170 0.998781 0.996919
_________________________________________________

48 0.976647 1.000163 0.996037

Both Tables show their evolutions of energy ratio are

very similar each other. But the CPU time of adjustment using the

above two schemes for a 48 hour forecast is different (Table 5).



Obviously, using the forward-backward scheme can save computer

time.

Table 5 CPU time (on NAS 9000, unit: second)

SCHEME CPU TIME

Two-time level 76.6221
Forward-backward 33.1701

====== ===== ===== ====== ===== ===== ===== ===

4. THE BOUNDARY CONDITION

In this section we'll compare briefly two boundary

condition schemes: Scheme A -- inflow/outflow boundary condition;

Scheme B -- boundary values come from outside. The boundary zone

Bl

-B2

B3

Fig. 12 the boundary zone

The boundary values at boundary points

: ...........................
'. '.. /~~~~~~~~~~~~~~

_. .. . . . . . . . . . . . : /\n

is shown in Fig. 12.



which lie on Bi would be determined by the above two schemes

respectively. The values at points of the buffer zone (B2 and B3)

are obtained by solving the Laplace equation 7 A = 0 using

relaxation method with outer boundary conditions at boundary B1

and internal boundary conditions. In our experiment, the inflow/

outflow boundary condition means that the data at the inflow grid

points of B1 come from the analysis field and the data at the

outflow grid points of Bl are determined by a quasi-Lagrangian

method as a linear advection scheme. After introducing the above

boundary conditions, there was a strong discontinuity between the

inflow point and the outflow point so that the three point

smoothing operator is used along boundary of Bl. The scheme B

means that all boundary values at points of Bl come from the

analysis field.

The results of a 48 hour integration with scheme A and

scheme B are shown in Fig.13 and Fig. 5 respectively. The split

advection scheme and forward-backward adjustment scheme are used

in both integrations. In Fig. 13 it is clear that there is very

strong gradient of height in the northeast boundary zone. However,

in Fig. 5 there is neither a discontinuity nor an abnormal gradi-

ent of height on the boundary zone. This very strong gradient

of height in the inflow/outflow boundary scheme is caused by



introducing boundary data from the linear advection field at out-

flow point of B1.

5. INTEGRATION OF THE BAROTROPIC MODEL

Following the above experiments, we chose the splitting

advection scheme described in section 2, the foreward-backward

adjustment scheme and a boundary condition scheme B with a buffer

zone. The model was integrated on the LFM grid, a polar stereo-

graphic projection. The grid interval is 190.5 km at 60 N. The

time step for advection scheme is 30 minutes ( or 45 minutes ),

and for the adjustment scheme is 7.5 minutes (or 11.25 minutes).

After each four step integrations of the adjustment process by

forward-backward scheme, one step integration of the advection by

quasi-Lagrangian method is made.

Initialization data for wind and heights are taken from

the LFM. When a longer advection time step, for example 45

minutes or one hour, is used, a 5-point smoothing over the

interior part of the grid is needed each 6 hours to inhibit the

growth of small turbulence. Forecast results after 12 - 48 hour

integration (start time: 0000 GMT, Oct. 10, 1986 ) by this baro-

tropic model are shown on Fig. 5 and Fig. 14 respectively.

we can see clearly that bothComparing these results,



prediction results have good agreement on the positions and

intensities of main weather systems. This means either the

advection scheme of this barotropic model is suitable or the

advection part in the atmosphere is most important. The main

difference between the two forecasts and analysis fields are the
O

trough located near 100-110 W and the High center upstream of

this trough: (1) After 24 hours, the trough forecast is

weaker than that of the analysis field. This was probably caused

by a strong baroclinic property of the trough. (2) The tendency

of the High forecasted by the barotropic model was not in agree-

ment with that on the analysis fields. (3) The forecast in

the subtropical zone is consistent with the analysis field very

much. This may be caused by accuracy of advection scheme and

boundary conditions or by barotropic property at the sub-

tropical area.

6. SUMMARY

In this model we used the split quasi-Lagrangian method

in order to avoid losing advection scheme accuracy caused by in-

correct position of the interpolated point. Although a splitting

scheme leads to a new truncation error, this error is not sig-

nificant when we chose a suitable time step. The experiments



with different advection schemes ( splitting scheme and nonsplit-

ting scheme ) show that most truncation error is caused by using

splitting technique in different physical processes of the baro-

tropic model. After a splitting scheme with a suitable advec-

tion time step is used in different physical processes, the down-

stream - splitting advection scheme with the cubic spline inter-

polation has a high accuracy which is approximate to that of a

upstream-nonsplitting advection scheme with the two dimensional

cubic spline interpolation. But the former can save much more

computer time. Since the limitation of time step is needed for

a barotropic model, in which the splitting technique was used

in different physical processes, the advection time step cannot

be too long. Otherwise the truncation error will become very

significant. This limitation of time step causes a slight loss

in the advantages of the quasi-Lagrangian method. But using the

splitting technique in physical processes provides an opportunity

to use a downstream splitting advection scheme with one dimen-

sional cubic spline interpolation; therefore, it is possible to

use a vector operation and still have the 4th order advection ac-

curacy.

The results of two boundary condition schemes indicated

that for a regional model with a one-way boundary conditions it



is important to provide accurate boundary conditions.
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Fig. 4 12 - 48 hour forecasts of height field
start time: 00 GMT, Oct. 10, 1986
advection scheme A
forward-backward adjustment scheme

Tadv = 30 minutes
Tadj = 7.5 minutes
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Fig. 5 12 - 48 hour forecasts of height field
start time: 00 GMT, Oct. 10, 1986
advection scheme B (splitting)
forward-backward adjustment scheme

Tadv = 30 minutes
Tadj = 7.5 minutes
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Fig. 6 12 - 48 hour forecasts of height field
start time: 00 GMT, Oct. 10, 1986

advection scheme C (upstream)
forward-backward adjustment scheme

Tadv = 30 minutes
Tadj = 7.5 minutes
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5Ocf] HEIGHT FIELD
12 GMT OCT.1I 1986

500MB HEIGHT FIELD
00 GHT CT.12 1986

Fig. 7 Analysis fields of 500 mb geopotential
corresponding Fig. 4, 5, and 6
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RDJLSTMEfT DT=1i.25 M

48 FOUR 500 MB HIGHT
RDVECTIrN DT-45 M

ADJUSTHENT DT=IL.25 M

Fig. 8 12 - 24 hour forecasts of height field
start time: 00 GMT, Oct. 10, 1986
advection scheme A
forward-backward adjustment scheme

Tadv = 45 minutes
- Tadj = 11.25 minutes



tI2 H.HUR 0 .HB HIGHT
RDMECTIN DT---4S H

RIJUSTlENT DT=11.25 14

5' HOUR 500 NS HIGHT
ROVECTIN DT--45 H

ADJUSTMENT DT=1L.25 H

2q HIUR 500 MB HIGHT
RDVECT1ON DT=45 H

nDJUSTHENT DT=11.25 H

8 IHOUR 500 HB HIGHT
ROVECTION VT=~S H

RDJUSTHENT DT=11.25 M

Fig. 9 12 - 48 hour forecasts of height field
start time: 00 GMT, Oct. 10, 1986
splitting advection scheme (B)
forward-backward adjustment scheme

Tadv = 45 . minutes
Tadj = 11.25 minutes



12 MHUR 580 lB HIGHT
RDVECTl3N OT--"5 H

ADJUSTMENT 0T=11.25 M

58 HOUR 500 MB HIGHT
RDVECTION DT--'5S M

RDJUSTMENT D[=11.25 M1

211 HOUR 500 N HIGHT
ROVECTION 0T=q5 H

RDJUMTHENT DT=ll.25 M

Fig. 10

18 HOUR 500 NB HIGHT
RDOVECTON DT=145 M4

RDJUSTHENT D'=11.25 14

12 - 48 hour forecasts of height field

start time: 00 GMT, Oct. 10, 1986

upstream advection scheme
forward-backward adjustment scheme

Tadv = 45 minutes
Tadj = 11.25 minutes



12 HOUR 50 HB MIGHT
RDVECTI5N DT30 1

ROJSTHENT DT--7?.5 M

3 HO'UR 503 NB HIGHT

NDVECT34 OT-30 M
DlJLTHENlT DT--7.5 H

2q HlOUR 50 HB HIGHT
RDVECTIN OT-=30 M

ROUJJUSTHENT DT--7. 5 M

40 HOUR 500 HB HIGHT
ROVECTION DT-3O M

RDJJSTHENT DT--7.5 H

Fig. 13 12 - 48 hour forecasts of height field
as the same with Fig. 5 but inflow/
outflow boundary condition scheme



12 H3UR 500 HB HIGHT
ADVECTIN DT--S 1M

ADJUSTMENT DT=11.25 H

S6 IHUR .500 HB HIGHT
RDVECTIN DT--dS 

ADROJLUSTMENT 01=11.25 H

24 H-UR 500 HB HIGHT
ROVECTI1N DT--5S H

ADJUSTMENT OT=11.25 M

48 HiUR SO0 HB HIGHT
RDVECTION DT--S M

ADJUSTMENT DT=11.25 

Fig. 14 12 - 48 hour forecasts of height field
as the same with Fig. 9 but using one
5-point smoothing each 6 hours.
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