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SUMMARY

Some practical problems in objective' analysis for numerical weather
prediction are best solved by using non-linear analysis equations.
They include the utilization of non-linear prior constraints on the
analysis, and the use of observations which are non-linearly related
to the analysis parameters, or which have non-Gaussian error
distributions. Bayesian methods are used to derive equations for the
optimal (maximum likelihood) non-linear analysis. It is shown how to
incorporate a strong constraint that the four-dimensional evolution of
the analysis should be consistent with a NWP model, by reduction of
the control variable to the space-dimensioned initial field for the
model. The iterative solution of the non-linear analysis equation
then involves the integration of the NWP model, and its adjoint.
The behavior of the non-linear equations is demonstrated with a

simple one-dimensional shallow-water model. It is shown that
time-tendency information, and indirect observations such as wind
speed, or the movement of a tracer, can be used in the analysis. The
resulting forecasts are better than those made from an analysis from a
traditional analysis-forecast cycle. The non-linear method is shown
to be capable of "moving" a discontinuity similar to a front, to fit
observations defining its position, thus giving an analysis with more
detail than would be expected from the spatial resolution of the
observations. Th'eincorporation of additional non-linear constraints.
such as that used in initialization, is demonstrated. The method can
be used to effectively reject observations with gross errors, by
specifying a non-Gaussian error distribution. However this generates
multiple minima which complicate the search for the best analysis, so
the complex decision taking algorithms associated with othermethods
of quality control are not avoided.
The convergence properties of iterative methods of solution. and

approximations to the ideal equations, are studied, in order to
provide some indication as to whether the non-linear effects might be
allowed for in a practical analysis scheme.

I



1. INTRODUCTION

Most methods of objective analysis in use for meteorological data are
linear in the observed data values. That is, each analysed value xaCj]
can be written as a linear combination of the data values yoCi]; this
is usually done in terms of deviations from background values xb[j]
and yb[i]:

xa[j ]=xb[j]+ WEj ,i ,] (yo[i]-ybEi ]) (1)

i

(1) is linear if the weights Wrj,i] are independent of the actual
observed values yo, but depend only on their positions and accuracies.
This is true of least-squares fitting techniques (for instance fitting
splines), of the successive-correction method, and of optimal
interpolation. These methods are all related, and can be shown to be
equivalent to Bayesian estimation, assuming that error distributions
of both observations and of any background fields are Gaussian, prior
constraints and relationships describing the desired analysis are
linear, and the relationships between analysed and observed variables
are linear (Lorenc 1986). Such assumptions lead to a variational
problem with a quadratic (L2) penalty function. However this is not
true of many of the problems currently of interest in meteorological
objective analysis for numerical weather prediction (NWP). These
problems include :-
a. Four-dimensional analysis constrained by non-linear prognostic
equations, to use time-tendency information from observations.
b. Use of "indirect" observations, with a non-linear relationship
between observed parameters and those analysed.
c. Analysis of near-discontinuities, such as fronts, which can be
regarded as a strong non-linear coupling between spatial scales in the
atmosphere.
d. Multivariate analysis, subject to non-linear balance constraints.
e. Quality control of observations, and use of data whose error

distributions are known to be non-Gaussian.

These problems have usually been tackled either by modification of
the optimal linear equation, or by new techniques which often do not
give optimal weighting to background information. Examples,
classified as above, are: (a) Lewis and Derber (1985), Talagrand and
Courtier (1986), Hoffmann (1986), (b) much work on temperature
retrievals from satellite radiances, and Julian (1984), (d)
Williamson and Daley (1983), Wahba (1982), (e) Purser (1984), Lorenc
and Hammon (1986).

In section 2 of this paper we derive the equation for a non-linear
optimal (maximum-likelihood Bayesian) analysis, following Lorenc
(1986). This equation can in principle be solved iteratively,
although practical meteorological examples are usually so large that
this is not feasible. In order to study the full non-linear optimal
equation, we apply it to a simple one-dimensional non-linear
shallow-water equation model, described in section 3. The initial
conditions used are such that a hydraulic jump develops; this is about
the simplest system that simulates some of the features of atmospheric
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fronts, and with it we can study all the problems (a) to (e) listed
above. This is done in section 4, referring each example to analagous
practical problems. It is shown that all of the examples can be
solved using the optimal non-linear analysis equation, so that in
principle at least the practical problems are capable of solution.
Even for the simple example system, there are practical problems in
finding the optimal solution. These are illustrated in section 5 for
various descent algorithms, and implications of some approximations
which might be made to the analysis equations for a practical problem
are discussed. Finally in section 6 we summarize.

2. OPTIMAL ANALYSIS EQUATION

2a. Bayesian derivation.

Lorenc (1986) discusses optimal analysis for numerical weather
prediction, and uses a Bayesian argument to derive equations to be
satisfied by the most likely analysis. The reader is referred to that
paper for further discussion of the derivation, which is repeated
here.

We define the best analysis as the most likely vector xa in a space of
possible representations of the atmosphere. These representations
have their resolution determined by the requirements of the forecast
model used for numerical weather prediction. The analysis equations
which we shall derive are geReral, for example they might be used for
spectral or grid-point representations in two- three- or
four-dimensions; in this paper we shall discuss them applied to space-
and time-dimensioned grid-point representions. Elements of this
analysis space are all denoted by x, with a subscript as appropriate.
Observations are not necessarily simply related to the elements of x.
The available observations define a space of vectors y, with the
actual observed values defining vector yo. We assume that the
observation and analysis spaces are precisely defined, so that
knowledge of the true atmospheric state defines true analysis and
observation vectors xt and yt. For example the precise meaning of a
grid-point value as a space-average, and the space- and time-averaging
properties of the observation instruments must be known. We further
assume that the analysis space's representation of the atmosphere is
sufficiently complete that given any x we can compute the most likely
corresponding y using:

y = Kn(x) (2)

The inverse of this, computing the most likely xa given the observed
values yo, is our analysis problem. Because the observations have
observational errors and are insufficient to determine the best x, we
need to use prior information about the probability that any state x
is the true state. This prior information contains a prior estimate
of the most likely true x, the background state xb. Since in most of
the following we shall assume that the prior probability Censity that
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x is the true state is a function of x-xb, we shall denote that the
prior probability density function by Pb(x-xb). Because of
instrumental errors, yo does not define yt; we denote the probability
density function that y is the true state by Po(y-yo). We must also
allow for the fact that neither the analysis space nor the observation
space are full representations of the true atmosphere, so that in
general Kn will have errors. Thus knowing xt only defines a
probability density function for yt, which we denote by Pf(y-Kn(xt)).
We shall need to know the probability of getting a particular set of
observed values yo, given a particular true analysis state xt. This
requires the convolution of Pf with Po. The resulting probability
distribution function, which we denote by Pof, describes both the
errors of representativeness and the instrumental errors; often the
combination is referred to simply as the observational error. Pof is
given by:

Pof(Kn(xt)-yo)= Po(yo-y) Pf(y-Kn(xt)) dy (3)

We are now in a position to use Bayes' Theorem to calculate the
probability Pa(x) that any state x is the true state, given a
particular set of observed values yo, and the background information
described by Pb(x-xb). Pa(x) is the analysis probability
distribution, given by:

Pa(x)= Pof(Kn(x)-yo) Pb(x-xb) /fPof(Kn(xl)-yo) Pb(xl-xb) dxl (4)

The maximum likelihood estimate of the "best" analysis xa is then
defined as that x which maximizes Pa(x). The product of probabilities
which appears in (4) can be transformed into a sum by taking
logarithms. The normalization term in the denominator is constant,
and does not affect xa. Thus maximizing (4) is equivalent to
minimizing a penalty function J given by:

J(x) = -ln(Pof(Kn(x)-yo)) -ln(Pb(x-xb)) (5)

2b. Optimum linear analysis

It is instructive at this stage to relate (5) to the better known
optimal interpolation (OI) equations. To derive these using (5) we
need a linearization of Kn whch is valid in the region of xb, and
require the probability distribution functions to be Gaussian.
Assuming that Kn is differentiable, with Jacobian matrix K, we get:

Kn(x+dx) = Kn(x) + K dx (6)

Multidimensional Gaussian distributions are:
* -1

Pf(y-Kn(x)) = exp(-(y-Kn(x)) F (y-Kn(x)) /2) (7)

* -1

Po(y-yo) = exp(-(y-yo) 0 (y-yo) /2) (8)
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* -1
Pb (x-xb) = exp(-(x-xb) B (x-xb) /2) (9)

The superscript * denotes the Hermitian conjugate, or adjoint; for our
real vectors and matrices the transpose. F 0 and B are the covariance
matrices for errors of representativeness, instrumental errors, and
background errors respectively. (The normalization constants to
ensure that these probability distribution functions integrate to
unity have been omitted since they-do not affect the minimization).
Substitution of (7) and (B) in (3) gives, to within a multiplicative
constant:

* -1
Pof(Kn(x)-yo) = exp(-(Kn(x)-yo) (O+F) (Kn(x)-yo) /2) (10)

Substitution of (9) and (10) in (5) gives:
* -1 * -1

J(x)= ((Kn(x)-yo) (O+F) (Kn(x)-yo) + (x-xb) B (x-xb) )/2 (11)

We denote partial derivatives with respect to the elements of the
argument of a function by a prime '. Then:

* -1 -1
J' (x)= K (O+F) (Kn(x)-yo) + B (x-xb) (12)

* -1 -1
J''(x)= K (O+F) K + B (13)

We have used (6) to write K instead of Kn'(x). If J(x) is well
behaved, then a necessary condition for J to be a minimum is:

J'(x)=O (14)

An explicit solution to (14) can be obtained by substitution of (6)
and (12). It is instructive for our non-linear problem to do an
equivalent derivation using the Newton method. If xi is an
approximate minimum of (11) then a better approximation x is given by:

-1
x =xi - J''(xi) J'(xi) (15)

Iteration of this equation should give the desired "maximum
likelihood" analysis xa. Since Pof and Pb are Gaussian, and Kn is
linear, then J is quadratic, and iteration is unnecessary. Taking xb
as the approximate minimum, (15) immediately gives the xa which
minimizes J. Substituting (12) and (13) gives:

* -1 -1 -1 * -1
xa= xb + (K (O+F) K +B ) K (O+F) (yo-Kn(xb)) (16)

*
As long as (KBK + O+F) is non-singular, (16) is equivalent to

* * -1
xa= xb + BK (KBK + O+F) (yo-Kn(xb)) (17)

This is a matrix form of the general multivariate 01 equation; the
matrix of weights W being given by

5



* * -1
W = BK (KBK + O+F) (18)

In 0I a continuous expression is used for the background error
covariances, which when evaluated at all grid-points gives B. Kn is
regarded as a simple interpolation whose errors are not explicitly
considered, so multiplication of B by K is replaced by evaluation of
the covariance function at observation positions, and O+F is replaced
by a single observational error covariance.

2c. Constrained minimization.

When prior knowledge about possible states x is expressed in
probablistic terms, using Pb, then the resulting minimization leads to
a weak constraint (Sasaki 1970). If an exact relationship is known
then the appropriate probability distribution function becomes a delta
function, and it is more convenient to treat it as an additional
strong constraint, either through the use of Legendre multipliers, or
by reduction of the control variable (LeDimet and Talagrand 1986).
The latter technique can be used if the constraint can be defined by
a function Gn relating x to a lower dimensional vector w:

x = Gn(w) (19)

Then the constrained minimization for x becomes an unconstrained
minimization for w. We shall use the prediction model described in
section 3 in this way. The space- and time-dimensioned field x is
constrained to be exactly consistent with the prediction equations
used in the model, so we can reduce the control variable to be the
space-dimensioned initial conditions for the prediction model. The
penalty function to be minimized with respect to w is:

J(w)= -ln(Pof(Kn(Gn(w))-yo)) -ln(Pb(w-wb)) (20)

The background field xb should also obey the constraint, so we have
replaced it by wb. Pb now define our prior knowledge about the
space-dimensioned fields w.

Although it apparently gives only a space dimensioned result, this
technique does find the best four-dimensional field x if the
relationship (19) is exact, so that it is appropriate to enforce it as
a strong constraint. If (19) is not exact the equations are still
valid as long as F takes into account its errors when representing the
error with which y can be calculated from w. However the results have
to be interpreted differently, since the solution for the best w no
longer gives us immediate knowledge of the best x.

2d. Iterative solutions to non-linear equation.

We now look for iterative methods of finding the minimum of (20) when
Kn or Gn are non-linear or Pof or Pb are non-Gaussian. We use wi to
denote the current best estimate of wa. the vector which minimizes
(20). To simplify notation we use dy to denote the deviations from
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the observed values of the observation estimates calculated using wi:

dy = Kn(Gn(wi))-yo (21)

We also introduce symbols for the components of the total penalty
function:

Jof(dy) = -ln(Pof(dy)) (22)

Jb(x-xb)= -ln(Pb(x-xb)) (23)

Assuming that Gn is differentiable, we can define matrix G by: -

Gn(wi+dw) = Gn(wi) + G dw (24)

The penalty function equivalent to (5) then becomes:

J(w) = Jof(dy) + Jb(w-wb) (25)

Its derivative with respect to w is:
* *

J'(w) = G K Jou'(dy) + Jb'(w-wb) (26)

If we ignore the dependence of G and K on w, then we can get an
approximation for the second derivative:

J''(w) = G K Jof''(dy) K G + Jb''(w-wb) (27)

If wi is an estimate of the w which mimimizes J, then the Newton
method give us a better estimate:

-1
w = wi - J''(wi) J'(wi) (28)

For Gaussian probability distributions, and using the approximation
(27), we get:

* * -1 -1 -1 * * -1 -1
w = wi - (G K (0+F) K S + B ) (G K (O+F) dy+B (wi-wb)) (29)

Note that for Kn or Gn non-linear, K and G will be functions of wi,
whose derivatives we have ignored in (27). This is sometimes called
the Gauss-Newton method. Iteration of this equation is the non-linear
equivalent of OI, extended to include the time-dimension.

K and G are the adjoints of our generalized interpolation Kn and
forecast model Gn; their evaluation is in principle straightforward,
and requires similar computer resources to the interpolation Kn and
forecast Gn. The main restriction is that the adjoint of a non-linear
prediction model requires a record of the actual prediction Gn(wi).
Details are given in section 3. Courtier and Talagrand (1986), and
Lewis and Derber (1985), give examples of their evaluation in
variational analysis methods designed to minimize Jof. The
incorporation of background information via Jb makes it necessary also
to manipulate the inverse of the covariance matrix B. In Lorenc
(1986) it is suggested that this might be done by expressing it in
terms of the normal modes of the forecast model (Phillips 1986). Thus
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the forcing term coming from J'(wi) in (29) can be evaluated. The
normalization term, equal to the inverse of J'' (wi), requires much
more computation, requiring the time-integration of square matrices
with the same order as the vector w. and a matrix inversion. This
computation requires as many resources as the Kalman-Bucy filter (Ghil
et al 1981). Indeed if the forecast model is linear and reversible,
(29) is equivalent to the Kalman-Bucy filter. Thus it is worthwhile
to investigate methods which do not require the calculation and
inversion of J''(wi). Suitable algorithms can be found in textbooks
such as Gill et al (1982). The method of steepest descent replaces
the normalization term by a scalar, calculated from evaluations of J.The conjugate-gradient method improves on this by using also previous
evaluations of J'. Both of these methods converge slowly for
eigenmodes of J7' with small eigenvalues. These are likely to be
similar to modes of B with large eigenvalues, ie those modes
describing the most likely errors in the background field. A possible
way of speeding convergence for these important modes is to move a
factor B from the normalization term to the forcing term in (29):

** -1 -1 * * -1
w = wi - (B G K (O+F) K G + I) (B G K (0-+-F) dy+(wi-wb)) (30)

This is equivalent to changing the control variable to v:
-1

v = B (w-wb) (31)

We now have to minimize

L(v) = Jof (dy) + Jb(Bv) (32)

using

L' (v)= B G K Jof ' (dy) + B Jb'(Bv) (33)

The Newton method iterative solution for v is then given by:

* * -1 -1 * * -1
v = vi - (B G K (O+F) K G B + B) (B G K (O+F) dy+ B vi ) (34)

Descent algorithms applied to (32) and (33) should give faster
convergence for the modes where the background is inaccurate, but
slower convergence for modes where the background information (such as
constraints on unlikely "unmeteorological" modes) is important. It is
shown in Lorenc (1986) that if the normalization factor is replaced by
a diagonal matrix of sums of unnormalized weights, (30) is a
generalization of the successive-correction method.

It is possible in principle to search for the minimum of (25) using amethod which does not require the explicit calculation of its
derivative (26). So there is no theoretical requirement that Kn and
Gn should be differentiable. However in practice the dimensionality
of w is such that any such method would converge extremely slowly.

8



3. EXPERIMENTAL SYSTEM

In order to study the behavior of the non-linear analysis equations
in an ideal situation, we choose a simple system where the prediction
model, its adjoint, and the background and observational error
distributions can be known exactly. A one-dimensional
finite-difference model of the shallow-water equations is used as our
strong constraint on the permitted space- and time-values of x.
Initialized 4rom smooth initial conditions wt which are known to
generate a hydraulic jump, it is integrated forward to generate the
truth xt. Background and observational error covariances are defined,
and a background wb and observations yo are calculated by adding
pseudo-random numbers consistent with these to wt and Kn(xt). Thus
all of the results shown in section 4 fall into the class of
"identical-twin" experiments.

3a. Forecast model and initial conditions.

The one-dimensional shallow-water equations with rotation are used in
the flux form given by Parrett and Cullen (1984 equation 8), who
showed that these equations are suitable for simulating a hydraulic
jump. The initial conditions wt, taken from their equation 9, are
smooth, but for the parameters chosen develop a hydraulic jump. The
equations are integrated, and results are presented, in
non-dimensional form. Except where noted the Coriolis parameter and
magnitude of the initial perturbation are set to give Rossby and
Froude numbers of 1, as in Parrett and Cullen (1984 figure 2). Cyclic
boundary conditions are used in space, with resolution 128, and the
model is integrated until (non-dimensional) time T=2.8, which is long
enough for the hydraulic jump to develop and propagate nearly across
the domain.

3b. Background and observational errors.

Phillips (1986) has suggested that a reasonable approximation to the
error covariance of a forecast background, in well observed regions,
may be obtained by postulating uncorrelated random errors in each of
the normal-modes of the linearized forecast model. We use this model
of errors to generate the covariance matrix B. By making the energy
in each mode a function of frequency, it would be possible in this way
to incorporate balance constraints. since with a high-frequency
cut-off only the geostrophically balanced modes of the background are
assumed to be in error, so only these are changed in the analysis
process which uses B. However in our simple example we are interested
in an unbalanced gravity mode, so this is inappropriate. Instead we
use a simple wavenumber dependency, equivalent to an analysis
constaint on smoothness. The error in a mode with wavenumber k is
assumed to be from a Gaussian distribution with zero mean and variance
Bk(k) given by:

4 -1

Bk(k) = B0 ( +- (k/3) ) (35)
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This pure wavenumber dependence gives no cross-correlations between
the error for different variables in the matrix B. (A high-frequency
cut-off would give "geostrophic' cross-correlations between height and
transverse velocity). All variables have the same horizontal
auto-correlation, shown in Fig.l.

The forward interpolation Kn is performed by calculating the value of
the observed parameter at the four surrounding points on the
space-time grid used to represent x, and then interpolating linearly
between these to the actual position and time of the observation. For
these experiments the errors of representativeness F in this forward
interpolation are assumed to be zero, and observational errors are
assumed to be random and Gaussian, with variance .0025 of that of the
same variable in the background.

3c. Adjoint model.
The forecast model Gn is implemented as a sequence of operations of a
time-stepping operator Mn upon the latest model states (two of them
for the leap-frog time-stepping scheme). Thus its linearization G can
be expressed as the product of the linearizations M of Mn about these
states, and the adjoint model G* as the product, in the reverse order,
of the time-stepping adjoints M*. Since the forecast model is
non-linear, its derivatives and adjoints are functions of the model
forecast states. The model Gn is integrated from wi to calculate xi.
Using these stored values, linearizing the explicit finite-difference
time-stepping operator is easy. Two terms are generated for each
non-linear product term in the basic model, so the linearized model
and its adjoint are between one and two times as complex as the
original model. As explained by Talagrand and Courtier (1986),
calculation of the term G*K*Jof' (dy) in (26) can be done by a single
integration, backwards in time, of the adjoints M* of each time-step
of the forward model, accumulating the forcing terms K*Jof'(dy) at
their valid times. The normalization term G*K*Jof'"(dy)KG in (27) can
be similarly treated, however for this a matrix rather than a model
state needs to be integrated backwards in time, approximately squaring
the number of computations necessary each time-step.

4. RESULTS AND METEOROLOGICAL INTERPRETATION.

In this section we present and discuss optimal non-linear analyses
obtained by minimizing (25) for the system described in section 3.
Our object is to demonstrate what is theoretically achievable in an
ideal situation. Discussion of more practical matters such as the
convergence rate of various methods, and approximations, is postponed
until section 5. Results are discussed in 5 sub-sections,
corresponding to the 5 meteorological analysis problems listed in the
introduction. The experiments performed are listed in Table. 1 and
Table.2.
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4a. Four-dimensional data assimilation

Four-dimensional data assimilation can be defined to be the use of a
four-dimensional distribution of observations, together with a
constraint on the resulting four-dimensional analysis that its
evolution in time should satisfy known prognostic equations, as
embodied in a forecast model (Lorenc 1986). Since forecast models are
not perfect, the latter constraint should not be strictly enforced.
Practical implementation of such a scheme is severely limited by
available computer resources. The storage and manipulation of
high-resolution four-dimensional analyses requires many more resources
than running an NWP forecast model, which only manipulates
three-dimensional fields. Research in this area has had to severely
limit the complexity of the forecast constraints, and the vertical and
time resolution of the analysis (e.g. Lewis and Bloom 1978).

The traditional NWP method of approximating four-dimensional data
assimilation is the analysis-forecast cycle, in which observations are
inserted using a purely three-dimensional analysis procedure into a
"background" forecast from the results of the previous analysis. This
method does allow for the imperfections of the forecast model; an
estimated background error is used to calculate the observation
weights in statistical analysis methods such as OI. However it does
not properly use time-tendency information in the observations, since
observations from different times are not analysed together.

If the prognostic equations are applied as a strong constraint as in
section 2b, then some of the computational difficulties can be avoided
through a reduction of the control variable. The four-dimensional
analysis is defined by a three-dimensional initial field plus the
prognostic equations, and (except for the current estimate xi)
four-dimensional fields need not be stored and manipulated, while
still obtaining an optimal four-dimensional use of observational
information. However this does not allow for inaccuracies in the
forecast model over the period of the observations used.

This work combines the latter "strong constraint" approach for a
short time-period, with the traditional analysis-forecast cycle
approach, so that time-tendency observations within this short period
can be used optimally, while information from earlier observations can
be used without assuming that the forecast model is perfect. Thus
while it is not truly optimal in its application of imperfect
prognostic constraints, it does match well the operational NWP
requirement of providing initial conditions for a forecast, using the
last analysis and observations valid during the period since the last
analysis was made.

Fig.2 shows the height field at time T=O from experiments to
illustrate this. In this and most subsequent figures the fields are
plotted as solid lines, the "truth" from which observations were
generated as dashed lines, and observed values as asterisks whose
height covers six times the observational error standard deviation,
and whose width covers one model gridlength. The bottom curve in
Fig.2 shows the background field, which in practice would come from a
forecast from earlier analyses. The bottom curve in Fig.3 and Fig.4
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shows a forecast from this background at T=l.4 and T=2.8, with the
corresponding "true" field for comparison. To simulate the current
operational situation, with most observations at main synoptic hours,
we assume a uniform space-distribution of observations at T=O and
T=l.4. For simplicity of presentation we only use height observations
for the first experiments. The curves labelled A in Fig.2 and Fig.3
show the optimal non-linear analysis obtained using these
observations. Fig.4 shows forecasts valid at T=2.B which can be used
to judge the extent that the information has been assimilated into the
model. Experiments B and C together used the same observations in an
analysis-forecast cycle. The curve labelled B in Fig.2 shows the
optimal analysis using only the observations available at T=O. With
the covariances we have assumed, this is equivalent to a univariate OI
of the height field at T=O, not altering the background winds.
Forecasts from this are clearly inferior to experiment A. Experiment
C used the forecast valid at T=1.4 as background for an analysis, in
space only, of the observations available at this time. This is also
clearly inferior to experiment A. At T=2.8 the hydraulic jump is as
badly positioned as in the background, while experiment A has both the
position and shape more nearly correct.

For some modern observing systems, observations are not at all
synoptic, but rather spread evenly in time. Satellite temperature
soundings were the first important example of this; an important
example in the future will be fixed "profilers", giving a detailed
time-history of the atmospheric profile at a few horizontal locations.
Experiment T demonstrates that our method can make optimal use of such
observations. To simulate a single profiler we generate u- and
v-momentum observations equally distributed in time at a point in the
middle of our horizontal domain. Fig.5 shows the u-momentum
observations, and the time-evolution of the analysis at that point
made using them. We can see clearly, near T=l.4, the passage through
the observation position of the hydraulic jump. Since it is a
propagating system it should be possible to deduce the horizontal
structure of the jump near the profiler from this information.
Examination of curve T in Fig.3 shows that this has indeed been done.

4b. Use of "indirect" observations.

Early experiments in four-dimensional data assimilation used rather
ad hoc modifications of the "direct insertion' method, whereby
observations were inserted into the forecast model state-at and near
their valid position and time. Using this method it is not clear how
to use observations not directly related to model variables;
observations are transformed to model variables before being inserted.
Thus for instance observations of outgoing radiances from satellite
temperature sounders are usually inverted into temperatures before
being assimilated. In section 2 the objective analysis is itself
couched as an inverse problem, with the transformation Kn from model
space to observation space explicitly considered, so prior inversion
is no longer necessary. As long as estimates of the observed
parameters can be calculated from the model using a well-behaved
differentiable function Kn, the observations can be used in the
analysis. Thus for radiances Kn would be the radiative transfer
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equation, calculating the outgoing radiation from the model's
temperature and humidity profile. This integrates a non-linear
physical-statisical retrieval algorithm for the satellite temperature
profiles (Rodgers 1976) into the four-dimensional data assimilation.
As NWP models are incorporating more sophisticated physical
parameterization and output schemes, the potential for using indirect
observations in this way is increasing. For instance observations of
outgoing longwave radiation (OLR) from convective clouds (Julian 1984)
could in principle be used, with Kn incorporating the model's
parameterization schemes for convection and radiation.

Another satellite instrument is capable of deducing the surface wind
speed over the ocean from microwave observations, but not its
direction. Experiment S simulates such an observing system. We
assume that observations are of parameter s, which can be calculated
from the basic model parameters height h, and momentum components U
and V by:

2 2 2
s = (U + V ) / h (36)

This, together with the space- and time-interpolation from the
nearest model points, constitutes our generalized interpolation
operator Kn. It is clearly non-linear, particularly near the
hydraulic jump where h can become very small. However its
differential K is well defined, since h is constrained to be always
greater than zero, and an optimal analysis should exist. Observations
of s are distributed for experiment S at the same positions as the h
observations of experiment A. Fig.6 and Fig.7 show that the analysis
from experiment S fits these data closely, more so than that from
experiment A. Although the experiment S analysis does not reproduce
the detailed structure of the jump at T=l.4 as well as experiment A,
it does give a better prediction of the jump's position and structure
at T=2.8 (Fig.4).

Another type of data, used in subjective analyses and forecasts, but
not useful in conventional updating data assimilation methods, is
tracer information. A time-series of observations of a parameter
advected by the wind field provides information about the wind field
as well as about thie advected field. We can simulate this in our
simple model by setting the Coriolis parameter to zero, uncoupling V
from h and U, and using V as a tracer. Fig.8 and Fig.9 show
experiments with this system. In experiment VA, the full adjoint
technique is used to modify h, U and V to obtain the best fit to the V
observations. In experiments VB and VC, h and U are kept at their
background values, and an analysis-forecast cycle (as in experiments B
and C) is used to update the V field. Useful corrections to the
advecting velocity are made in experiment VA, so that its forecast V
field at T=2.8 is better than that of experiment VC (Fig.10).

4c. Analysis of discontinuities and fronts.

For many years human analysts have had conceptual models of fronts,
and have fitted these to rather sparce data, producing analyses with
detailed structure such as sharp windshears. even when these were not
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well resolved by the observations. This process is non-linear; the
use the analyst makes of an observation depends on what he believes
the meteorological situation to be, based in part on the observation
value. Attempts to formalize such conceptual models and automate this
analysis process have not been very successful. However we now have
high-resolution NWP models which generate naturally very realistic
looking frontal structures. These forecast models might be able to
replace the conceptual models in a non-linear analysis scheme, to
produce analyses which are consistent both with the observations and
with the model's dynamics. Given a background with a front somewhat
misplaced, a human analyst will move it to fit available observations,
while keeping basically the same structure. A linear analysis scheme
like (1) cannot do this, as illustrated in Fig.3 curve E, which shows
a linear, space-only, analysis of the observations at T=l.4 using the
background shown in the bottom curve. The linear analysis has put a
jump near the correct position, however its structure is incorrect,
and "shadows" remain of jumps in incorrect positions in the background
field. This can be compared with the non-linear analysis shown in
curve D, which used the same observations, but did a space- and
time-analysis using as background the bottom curve in Fig.2. The
non-linear method has moved the hydraulic jump at T=1.4 to fit the
data, while keeping its structure. Indeed this analysis is better
than that from the analysis-forecast cycle (C), which used, linearly,
twice as many observations. The beneficial non-linear used of
observations in experiment D comes from the used of the non-linear
forecast model to link T=O with T=l.4. We still assume that errors at
T=O in wb are described by B, that is that they are large scale and
there is no non-linear coupling of scales. The method only gives an
improvement in the analysis at T=1.4 insofar as the small scales at
that time are determined by the larger scales at T=O. This is true
for our chosen example; it is also probably true to a large extent for
atmospheric fronts, whose positions and structure depend on the larger
scale forcing.

4d. Balance constraints, initialization.

We discussed in section 3b how, by specifying the background error
for each mode as a function of its frequency, we could incorporate a
geostrophic balance constraint on the deviations of the analysis from
the background. Such a constraint is linear. and only constrains the
total analysis field if the background is itself balanced. It is
sometimes desirable to incorporate a non-linear constraint on the
total analysis into the analysis process. Such a constraint can be
justified if we have prior knowledge that the atmosphere is usually
slowly varying. NWP models, if integrated for a sufficiently long
time, also have this property. However since we are only using the
model as a strong constraint over a short time-period, for which the -

model will also allow rapidly varying gravity-wave modes, we must use
other means to enforce the constraint. The simplest way is to add to
the total penalty (25), a penalty term Jin(w) which penalizes rapid
variations. In order to have the same effect as non-linear
initialization, we implement this penalty on the time derivatives
calculated by the NWP model during its first timestep at T=O.

14



* 2
Jin(w) = (w-Mn(w)) C (w-Mn(w)) .5/dT (37)

C is a matrix specifying the penalty on each model variable. Since we
are already calculating Mn(w) and M* during the analysis, the addition
of this penalty and its derivatives to (25) (26) and (27) is easy.
Experiment TIN incorporated such a penalty, with other details
identical to experiment T. In current operational schemes a
non-linear initialization is often applied after the analysis is
complete. This can significantly decrease the closeness of fit to the
observations. We see in Fig.5 that experiment TIN has fitted the
observations as closely as experiment T, while reducing slightly the
initial rapid variation in U. Errors relative to the "true" field
still exist in the large scale h field, since this is defined neither
by the observations nor by the constraint (Fig.3), but the spurious
jumps introduced by the background, and not altered except in position
in experiment T, have been reduced by the initialization constraint.
This causes the forecast structure at T=2.8 to be better (Fig.4).

4e. Non-Gaussian observational errors and quality control.

Unfortunately the observations available for routine NWP occasionally
deviate by a large amount from the true value, because of gross error,
either human, or in the instrument or communication system. Many more
such errors occur than would be expected from the Gaussian
distribution which describes the majority of errors. Traditionally
such data are searched for and eliminated during a preliminary quality
control step. Purser (1984) suggested that an alternative approach
would be to consider the non-Gaussian error distribution directly in
the analysis. A simple model for the distribution of gross errors has
been put forward and tested by Lorenc and Hammon (1986). They
postulated that there was a small probability of a gross error event
occuring, and if it did occur the observed value had no useful
information, but was equally likely to be any value within a range of
plausible values as defined by (say) several times the background
error standard deviation. This leads to a probability distribution
function for a single observation [i], from both instrumental and
gross errors, valid in the range of plausible values:

* -1
Po(y[i ]-yo[i]) = exp(-(y[i]-yo[i]) O[i] (y[i]-yoEi])/2) + g (38)

Here yo[i] is a single observed value, O[i] is its instrumental error
variance, and g is a constant depending on the prior probability of a
gross error and the range over which gross errors are distributed.
Again we have omitted normalization constants, as in (8). If the
occurences of gross errors in different observations are independent,
like the instrumental errors, then the combined probability
distribution for many observations will be the product of these
factors. Taking logarithms then gives (ignoring the convolution with
errors of representativeness):

cf~dy) - ( -p -y i -o i O l a) 39* -1Jof(dy) =z -ln( exp(-(y[i]-yo~i]) O~i] (y~i]-yo[i])/2) + 9) (39)

i
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If the probability of a gross error occuring is .05, and observations
in gross error give values equally spread within four standard
deviations of the background value, then with the background and
observation errors we are using, g equals 0.0008ooo25. Fig.ll shows thepenalty function for a single observation using these values (shifted
by ln(g)), with the equivalent quadratic penalty function for a pureGaussian distribution for comparison. Near the observed value thefunctions are identical. However farther away the new function
asymtotes to a plateau value, rather than continuing to increase.
This has very important consequences for the total penalty function,since it makes the existence of multiple local minima much more
likely. Our iterative mimimization algorithms are designed to findany minimum, rather than the smallest, so they are therefore much less
likely to find the most likely analysis.

Experiments illustrating this are shown in Fig.12 and Fig.13, and
listed in Table.2. Particularly when using the non-Gaussian
observational error probability distribution (38), the minimum locatedby the iterative solution method depends greatly on the first guess
used to start the iteration. Thus experiment AQ fitted very few ofthe data, finding a local minimum near to its first guess, which wasthe background. This can be compared with experiment AQA, which founda lower mimimum near the analysis of experiment A, fitting all thedata. When one of the data values was arbitarily increased by 0.5, tosimulate a gross error, then starting from experiment A as first guessthe datum was rejected while others were fitted (experiment AQGA inFig.13). This is the result we might hope for from an ideal scheme.
However the analysis (not shown) starting from the background field,
fitted as few data as experiment AD. Moreover the "bad" datum wegenerated was not completely implausible; experiment AG fitted it bymoving the nearby peak in the background field. Starting with thisanalysis as first guess, experiment AQGAG continued to fit the "bad"
datum, rejecting its neighbours instead. The minimum found in
experiment AQGA was lowest of those shown, but a more complex search
algorithm would be necessary to be sure it was the absolute minimum.Problems of multiple minima are discussed further in section 5c. It
is clear however that simply using a non-Gaussian penalty function
does not relieve us from the need for complex logic and decisiontaking algorithms associated with traditional quality control methods.

5. SOLUTION METHODS.

In section 4 we were concerned with the "meteorological" properties
of the solutions obtained, without regard to the means of obtaining
them. In this section we discuss practical problems of solving theequations. So as to be able to continue iteration until we are sure aminimum has been found, and to perform the matrix manipulations
required to calculate and invert the normalization factor J''(wi),
experiments were per-formed with a horizontal grid of 64 points. They
are listed in Table.3. After describing, in section 5a, an ad hoc
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additional constraint which was found to be necessary, we go on to
describe the descent algorithms tried and their properties in section
5b. In section 5c we discuss some examples of multiple minima, and in
section 5d some possible practical approximations.

5a. Constraint on realistic heights in forecast model.

The forecast model Gn, which we use to calculate the -space-time
fields xi from the initial space field wi, has truncation errors in
its time-stepping algorithm and can generate negative values for the
height h. This unphysical result must be avoided, however the
"correct" way of doing so, reducing the time-step, is not easy to
implement in practice. Instead we choose time-step and diffusion
coefficients such that neither the "truth" nor the background give h
less than 0.1, and keep these values for all experiments. -When, as
quite often occurs, a new estimate of wi gives heights less than or
equal to zero, then the integration of the forecast model is stopped,
and the iteration is restarted using a modified wi formed by averaging
wi with that giving the last successful integration. In order to
avoid this abrupt limit being a factor in any final solution, an
additional penalty function Jh(wi) is included in the total penalty
J(wi) given by (25):

a_ ~~~3
Jh(wi) = Ch max(O,hl-h) (40)

grid

Here hl is the arbitrarily chosen limit O.1, Ch is a constant
coefficient, and the summation is taken over all h values in Gn(wi).
If this penalty is large the iteration is restarted, as described
above. Otherwise it and its derivatives are added to (25) (26) and
(27). This has little effect on the final solutions for the examples
shown; indeed for the "truth" and the background it has no effect,
since these have no h values less than hl. However restarting the
descent algorithms with modified wi, as described above, has
considerable effect on their speed of convergence. The additional
penalty (40) also slows convergence to fitting the observations of
small values of h, like those in the centre of Fig.2, although in most
cases a close fit is finally achieved, as can be seen in the figure.

5b. Descent algorithms, and speed of convergence.

In OI the penalty function J is quadratic, and the optimal analysis
is found in one iteration by using (17). The matrices which have to
be inverted are kept small by truncating the data selected to
influence each grid-point. Courtier and Talagrand (1986) performed
experiments with a simple vorticity equation model and sufficient
observations to determine the solution without using any background
information (although they did find useful a constaint that the
analysis be smooth). They demonstrated that their penalty function
was approximately quadratic and iterated using (25) and (26)
(excluding the background terms), with spectral coefficients as
control variable. They did not thoroughly investigate descent
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algorithms, however they stated that the steepest descent algorithm
did not converge in a reasonable number of iterations, the
conjugate-gradient algorithm gave acceptable results after between 10
and 100 iterations, and a quasi-Newton method was more efficient.
Bratseth (1986) has presented an iterative successive-correction
method which is equivalent to OI; the method is similar to (30) (see
Lorenc 1986 for more details). In experiments with this scheme Gronas
and Midtbo (1986) found that when there are no serious conflicts
between the error statistics and the observations, 5-10 iterations may
be sufficient. Slower convergence resulted for modes where the
background was less likely to be in error, and was often associated
with erroneous observations.

In this work the penalty function J can be far from quadratic for any
of the reasons listed in the introduction. It is therefore of
interest to see whether a reasonable speed of convergence can be
achieved, as guidance as to whether it might be feasible to include
such non-linear effects in an operational analysis system. The rates
of convergence of five different descent algorithms are compared in
Fig. 14. Experiment 1A, shown as a solid line, used the Newton method
of (29). For a penalty function which is approximately quadratic this
should give a rapid convergence, the fact that it did not demonstrates
the importance of the non-linearity of Gn. For the first few
iterations convergence was also slowed by the additional constraint on
h being positive, as discussed in section 5a. Integration of the
adjoint model for the matrix term in Jof''(wi) is extremely expensive.
In experiment 1AM (shown as long dashes) an attempt was made to save
time on this by only recalculating it every tenth iteration. This
converged significantly slower, another indication the J is
non-quadratic. However, despite this, the modified method required
less computation for a given convergence. Experiment 2A, shown as a
dotted line, used a conjugate-gradient algorithm (Powell 1977). If
not restarted by the procedure of section 5a, the method was restarted
every twentieth iteration, the first step after each restart being in
the direction of steepest descent. This method only uses the penalty
(25) and its gradient (26); it is much less costly in both computer
time and storage requirements than the first. Experiment 3A, shown as
short dashes, was like experiment 2A, but using as control variable
the transformed variable v (31). Finally in experiment 4A, shown as a
dash-dot line, methods 3 and 2 were alternated each restart. This
method was concidered to be the most robust, and was used for the
experiments shown in section 4. The final states achieved by each
method were nearly identical; that from method 3 is shown in Fig. 18
Fig.19 and Fig.20 curve 3A. Differences were probably due to computer
truncation errors. Method 1 is in fact searching for the zero of the
gradient J' (w), while the other methods are searching for the minimum
of J(w). Method 3 requires extra multiplications by B. It was found
that double precision computations were desirable for close
convergence of methods 2 3 and 4, while they were essential for
calculation of the matrix Jof''(wi) in method 1.

For this example, the most cost-effective method of achieving final
convergence is method 2. However this in practice is not the only
criterion for choosing a method. The final stages of convergence can
be making detailed changes well within the uncertainty about what is
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the "true state. This is shown in Fig.15 which shows the convergence
rates for experiments like those shown in Fig.14, but starting from a
first guess equal to the "true" state from which the background and
observations were generated. Method 3 can be seen to be converging
extremely slowly, but this is of no practical importance. If we look
at Fig.14(b) we see that on the way to the final converged state
method 2 gives large values of the background penalty Jb; nearly three
time that of the "true" state (which of course in these idealized
experiments we know). This ratio should be between 0 (if the
observations are useless), and 1 (if the observations alone are
sufficient to define the "true" state). All except method 3 seem to
achieve convergence by first fitting the observations closely, then
modifying the state reached to comply with the background constraint,
which in our case was simply on the smoothness of the deviation from
wb. This effect is illustrated in Fig.16 for a simpler, space-only
example in which fewer h observations, at the single time T=O.0, were
analysed. In this case wi is equivalent to xi, and we are finding the
minimum of the quadratic penalty (11). Method 1 is a form of OI, and
converges in one iteration. Method 3 actually converges slightly
faster than method 2 in this example, but there seems little to choose
between their convergence rates for the total penalty. However we see
in Fig. 16(b) that there is a big difference between their convergence
for the background penalty. Method 2, until it has nearly fully
converged, has large values of the background penalty. This is
equivalent to saying that it gives states which our prior knowledge
leads us to believe are unlikely to be correct. If we have confidence
in our prior knowledge this is clearly undesirable. In this example
our prior knowledge only constrains the smoothness of the h fields'
difference from the background. Fig.17 curves 28 and 3B show the
states given by methods 2 and 3 after five iterations. Curve 2B is
undesirably rough. Thus if we are looking for a method to be used
practically with a limited number of iterations, and if our prior
knowledge is more important than a close fit to all observations.
method 3 is to be prefered.

5c. Multiple minima.

The convergence properties of any method become greatly different
from those for a quadratic penalty function when the penalty has
multiple minima, or regions with small or zero gradient. We saw in
Fig.ll how an observation which has a finite chance of being incorrect
gives a penalty function which has nearly horizontal plateaus away
from the observed value. In these regions the local derivative of the
penalty function does not give any information about which direction
to search for a lower value. Minor perturbations to the penalty, as
can easily occur in a problem including a model with wave-like
solutions, can convert such plateaus to local minima. In such casessolution methods can converge to a local minimum. Which minimum is
located depends on the initial guess for the iterative algorithm, as
illustrated by the experiments discussed in section 4e. It also
depends on which descent algorithm is used; experiments 2AQD and 3AQ
use methods 2 and 3 repectively. Their analyses (Fig.17 and Fig.18)
show no sign of further convergence after 800 iterations each. Method
3 has found the lower minimum, with penalty equal to 174.5 compared to
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method 2's 313.0. Multiple minima are not confined to the
non-Gaussian observation error distribution experiments in our
examples. If the number of data is reduced slightly, so that the
shape of the jump at T=l.4 is even less well resolved, then a solution
exists with the wrong peak of the wave fitting the maximum
observation. Experiment 3AO in Fig.18 illustrates this. A penalty
function with plateaus would also result from the use of indirect
data, such as OLR from convective clouds, which relate to processes
which in the forecast model have distinct limits for their initiation.
If the current best estimate wi does not imply convection, then even
if the forward process Kn(Gn(wi)) is differentiable, it is unlikely
that its gradient will indicate in which direction to move to initiate
convection. As with all non-linear systems, these problems can be
reduced by having as good a first estimate as possible, so that
linearization about it is accurate over the range of likely states.

5d. Approximations.

Practical analysis schemes for NWP need to process very large numbers
of observations and high resolution forecast models, and the results
must be available within strict time-constraints. One purpose of this
work is to study approximations to the ideal equations, and their
cost-effectiveness. The first approximation is unavoidable. Actual
forecast models are not perfect, and the assumption that the forecast
model can be used as-a strong constraint needs to be tested. We do
this by performing experiment 3AT in which the "truth" is generated by
a model which is not an identical-twin of the model used for the
assimilation. The observations from experiment A are analysed using a
model with half the resolution. The results are shown in Fig.17
Fig.18 and Fig.19 curve 3AT. They can be compared with curve 3A,
which shows the equivalent identical-twin experiment, and with curve
A, which was interpolated from the higher resolution identical-twin
experiment A. Experiment 3AT did successfully position the hydraulic
jump at T=1.4 (Fig.1e), however it could not get the correct
wavelength for the ripples behind the jump; these are a function of
the model's resolution. The forecast for T=2.8 (Fig.19) was not as
good as in either of the identical-twin experiments, but still had
some value.

The effect of the non-linearity of Gn, making (24) an inaccurate
approximation, can be demonstrated by reducing all error variances by
a constant factor. If this is done consistently both to the variances
in B and O+F, and to the actual pseudo-random errors used when
generating observations and background from the "truth", then (to a
first approximation) the initial and final value of the penalty
function are not altered. However dw in (24) is altered, and (24)
becomes a better approximation. Experiment 3AS is like experiment 3A
but with error variances reduced by a factor of 10. The resulting
analyses are shown in Fig.17 Fig.18 and Fig.19, and the rate of
convergence in Fig.20 (solid line). The experiment does as expected
converge more rapidly than experiment 3A (dashed line) especially
initially when the non-linear effect discussed in section 5a slows
convergence of experiment 3A.
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The computation of J' (wi) using (27) is impracticable for a model
with realistic resolution. Moreover a manipulation analagous to that
giving (17), which reduces the matrix order to the number of data
used, is not available to us if we wish to use the adjoint model
technique to reduce the control variable in the time-dimension. We
are forced therefore to use a minimization algorithm which
approximates or does not need this. Lorenc (1986) explains how the
successive-correction method can be thought of as using (30) with the
term coming from J' (wi) approximated by a diagonal matrix of the sum
of unnormalized weights. In this work we have used the
conjugate-gradient method. Research into efficient approximate
descent algorithms combining these approaches is in progress.

It is important for practical schemes that iteration can be truncated
before complete convergence. We saw in section 5b that method 3,
using (31) (32) and (33), always gives a state which is not too
unlikely given our prior background knowledge. It might not, however,
fit all the observations closely. These are desirable properties for
a NWP analysis scheme, since observations occasionally have gross
errors. Another advantage of approximations based on method 3 is that
the inverse of B is not needed, and B can be singular. For instance
if we wish to assume that the errors in wb are precisely geostrophic,
we can set to zero the error variances in ageostrophic modes,
identified in section 3b as those modes with non-zero frequency. Such
error covariance models are routinely used in DI. We see in Fig.14(b)
that method 3 converges extremely slowly for those modes which
contribute most to the background penalty. If, as is usually done, we
start the iteration with wi=wb, then initially the background penalty
will be zero. This suggests that a further approximation can be made
by ignoring the background penalty, if we are going to truncate the
iteration before complete convergence. Curve 3AG of Fig.17 Fig.18 and
Fig.19 show the results of such a scheme after 30 iterations. The
major features of the analysis are correct. The dotted curves of
Fig.20 show the convergence of this approximate scheme. Iterated
indefinitely the scheme will, if it is possible, fit the observations
exactly, something which is undesirable for our inaccurate
observations and useful background information. But after a finite
number of iterations this will not be the case. Talagrand and
Courtier (1986) have made such an approximation, it is also implicit
in the old successive-correction methods (Lorenc 1986).

Another possibility for approximation is available as long as the
analysis is regarded as the minimization of the penalty (25), rather
than finding the zero of its derivative (26). As mentioned at the end
of section 2, the derivative is then only needed to speed convergence
in the search for this minimum, by indicating a search direction. For
this it might be possible to approximate the adjoint model G*.
Approximations of this sort have yet to be sought for this system.
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6. DISCUSSION

We have presented in section 2 a derivation of analysis equations
which can be non-linear in the data values. That is, the weights
given to observations depend on the analysed fields, not just their
positions and accuracy. The equations can be used when we have
non-linear relationships constraining the analysis, or when the
observed data are non-linearly related to the desired fields, or when
the error distributions are non-Gaussian. They are optimal, if we
assume that the best estimate is that which is most likely. For the
linear Gaussian case they simplify to the well known 01 equations.

Simplifications can be made in the use of prognostic constraints if
we assume that, for a short period, errors in a forecast model are
negligable, so it can be used as a strong constraint in space and time
on the allowable solutions. This reduces the analysis to a space only
problem, with the integration of the forecast model and its adjoint,
as suggested by LeDimet and Talagrand (1986). Iterative solution
methods for this system are derived.

In order to test the behavior of the scheme in non-linear cases, we
set it up for a shallow-water model which forecasts the evolution of a
hydraulic jump, described in section 3. Examples analagous to
practical problems in objective analysis for numerical weather
prediction were presented in section 4. We demonstrated that:-
a. The non-linear analysis method is able to use time-tendency
information from observations better than the analysis-forecast cycle
method which is normally used for data assimilation. It could also
convert a time-sequence of data from a single observation location
into useful information about the spatial structure of the field.
b. The data used in the analysis do not have to be transformed to

the analysed parameters; it is only necessary to have a known method
for calculating the observed parameters from those analysed. Thus
observations of wind speed, without direction information, can be
used, as can information about the advection of a tracer.
c. If the forecast model generates realistic structures for features

like fronts, then the non-linear method is capable of "moving" such a
feature in the first-guess to fit the available data, even if the data
do not resolve all the details of the feature. The resulting analysis
is thus more detailed than a scale analysis of the observational
distribution alone would lead one to expect.
d. An additional constraint, that the non-linear evolution of the

analysed field should be slow, can be incorporated as part of the
analysis process. This improves the evolution of the subsequent
forecast from the analysis, without greatly reducing the fit of the
analysis to the observations.

e. Observations which are more likely to have large errors than
would be expected from a normal distribution of instrumental errors,
can be allowed for by specifying an appropriate non-Gaussian error
distribution. If we make the reasonable assumption that observations
with such gross errors contain no useful information, then a limit is
placed on the penalty function being minimized. This generates
"plateau" regions, and greatly increases the difficulties in finding
the best analysis if we do not have an accurate first-guess. Thus the
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complex logic required for a comprehensive quality control is not
avoided. However, given a reasonable first-guess, the method does
effectively ignore erroneous data.

The properties of the methods used to solve the non-linear analysis
equations were studied in section 5, with a view to providing guidance
as to possible methods for practical schemes. The Gauss-Newton
method, which is equivalent to 01 for the linear case, was found to be
very expensive when used for the data assimilation problem. When the
analysis was significantly non-linear its convergence was often rather
slow. Approximations to the normalization factor slowed convergence
even more. Experience with the successive-correction method, which
uses a very inexpensive approximation to the normalization factor,
suggests that it may be useful to seek a similar approximation for
these equations. Research in this area is continuing. Other
experiment studied the conjugate-gradient method. The choice of
control variable for this descent algorithm was found to be crucial
for the characteristics of the analysed fields if iteration was not
taken to convergence. Use of a grid-point representation, and a
straightforward application of the conjugate-gradient algorithm to the
basic equations (25) and (26), gave fields after a few iterations that
were unlikely, given our prior knowledge of the background field.
This is undesirable for practical schemes. By transforming the
control variable using the background error covariance, and applying
the conjugate-gradient method to (32) and (33), we could ensure that
the iteration always gave fields which were not unlikely. Because
this algorithm ensures that the background penalty remains small, we
could make a further approximation by ignoring it.

For cases where the analysis was so non-linear that the penalty
function had multiple minima, the importance of a good initial
estimate was demonstrated. For observations with a possibility of
gross errors a preliminary analysis using data which passed a
preliminary quality control could be used. For non-linear indirect
data such as observations of OLR, the process observed, convection,
should be predicted in the first guess. Otherwise it is unlikely that
the gradient of the penalty will indicate in which direction to search
to initiate convection. It should be noted that the initial estimate
need not be the background field for (29) to be valid, nor need it be
independent of the ooservations to be used. However if it does not
give a low value for the background penalty Jb. then the advantages of
using the transformed control variable v and a truncated number of
iterations will be lost.

The iterative analysis method studied in this work is not the only
way of introducing non-linear effects into the basic, linear, methods
such as 01. Some effects can be allowed for by determining some of
the "constant" coefficients used in the linear method from a
preliminary scan of the observations and background. One example is
the use of background error covariances which are dependent on the
local meteorological situation, another is the use of a preliminary
quality control scan to detect and reject erroneous data.

This work was performed while the author was a visiting scientist at
the NOAA, NWS, National Meteorological Center, Washington, DC.

23



REFERENCES

Bratseth,A.M.

Courtier,P., and
Talagrand,O.

Shil,M.,
Cohn,S.E.,
Tavantzis,J.,
Bube,K., and
Isaacson,E.

Gill,P.E.,
Murray,W., and
Wright,M.H.

Gronas,S., and
Midtbo, K.H.

Hoffmann,R.N.

Jul ian,P.R.

LeDimet,F-X., and
Talagrand,O.

Lewis,J.M. and
Bloom,S.C.

Lewis,J.M. and
Derber,J.C.

Lorenc,A.C.

LorencA.C., and
Hammon,O.

Parrett,C.A., and
Cullen M.J.P.

1986 "Statistical interpolation by means of
successive corrections." Tellus, 38A, to appear

1986 "Variational assimilation of meteorological
observations with the adjoint vorticty
equations. - Part II. Numerical results."
Quart. J. R. Met. Soc., submitted

1981 "Applications of estimation theory to numerical
weather prediction." Dynamical meteorology:
Data assimilation methods. eds. Bengtsson,L.,
Ghil,M., and Kallen,E. New York,
Springer-Verlag, 139-224

1982 "Practical optimization" Academic Press.
London.

1986 "Four dimensional data assimilation at the
Norwegian Meteorological Institute" Norwergian
Met. Inst., Oslo. Tech. Rept. No 66. 66pp

1986 "A four dimensional analysis exactly satisfying
equations of motion." lIon. Wea. Rev., 114,
388-397

1984 '"Objective analysis in the Tropics: A proposed
scheme." Mon. Wea. Rev., 112, 1752-1767

1986 "Variational algorithms for analysis and
assimilation of meteorological observations:
theoretical aspects." Tellus, 38A, 97-110

1978 "Incorporation of time continuity into
subsynoptic analysis by using dynamical
constraints." Tellus, 30, 496-516

l985 "The use of adjoint equations to solve a
variational adjustment problem with advective
constraints." Tellus, 37A, 309-322

1986 "Analysis methods for numerical weather
prediction." Quart. J. Roy. Met. Soc., 112,
???--???

1986 "Objective quality control of observations
using Bayesian methods - Theory, and a
practical implementation." Met 0 11 Tech. Note
225.

1984 "Simulation of hydraulic jumps in the presence
of rotation and mountains."' Quart. J. R. Iet.
Soc. , 110 147--165

24



Phil lips,N.A.

Powell ,M.J.D.

Purser,R.J.

Rodgers, C. D.

Sasaki , Y.

Talagrand,O., and
Courtier, P.

Wahba,G.

Williamson,D.,
and Daley,R.

1986 "The spatial structure of random geostrophic
modes and first--guess errors." Tellus, 38A,
???--???

1977 "Restart procedures for the conjugate gradient
method." Mathematical Programming, 12, 241-254

1984 "A new approach to the optimal assimilation of
meteorological data by iterative Bayesian
analysis." Preprints, 10th conference on
weather forecasting and analysis. Am. Met.
Soc., 102-105

1976 "Retrieval of atmospheric temperature and
composition from remote measurements of thermal
radiation." Rev. Geophys. Space Phys., 14,
609-624

1970 "Some basic formalisms on numerical variational
analysis." Mon. Wea. Rev., 98, 875-883

1986 "Variational assimilation of meteorological
observations with the adjoint vorticity
equation - Part 1. Theory." Quart. J. Roy. Met.
Soc., submitted.

1982 "Variational methods in simultaneous optimum
interpolation and initialization." The
interaction between objective analysis and
initialization: Proc, 14th Stanstead seminar.
ed Williamson,D., Publ. in Meteorology 127,
McGill Univ. Montreal., 178-185

1983 "A unified analysis-initialization technique."
Mon. Wea. Rev., ill, 1517-1536

25



Table 1. Experiments described in sections 4a to 4d.
Curves in Fig.2 to Fig. 10 are labelled with Expt
Observations were either equally distributed in space at each
time, or equally distributed in time at one position.
Experiments used a space grid of 128 points.

_____________
Observations

35 h at T=O.O
35 h at T=I.4

35 h at T=O.O
35 h at T=l.4

35

35

35
35

35
35

35
35

38
38

38
38

Description

baseline optimal non-linear analysis.

analysis-forecast cycle:
linear analysis at T=O
linear analysis at T=1.4, using a background
forecast from expt B.

h at T=1.4 optimal non-linear analysis.

h at T=l.4 linear analysis at T=l.4, using a background
forecast from the T=O background.

s at T=O.O optimal non-linear analysis of observations
s at T=l.4 of wind-speed squared s = (U*U + V*V)/h*h.

V at T=O.O optimal non-linear analysis of observations
V at T=l.4 of a tracer V (with Coriolis parameter = 0).

V at T=O.O
V at T=1.4

U at S=pi
V at S=pi

U at S=pi
V at S=pi

analysis-forecast cycle:
linear analysis at T=O
linear analysis at T=l.4 using VB as background,
of a tracer V (with Coriolis parameter = 0).

optimal non-linear analysis.

optimal non-linear analysis, with additional
penalty on rapid variations.
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Expt
_____
A

B&C
B
C

D

SE

L

VCVB&
VB
VC

TIN

;TIN

l

I
i

I



Table 2. Experiments described in sections 4e.
Curves in Fig.12 & Fig.13 are labelled with Expt.
35 h observations were equally distributed in space
at T=O.O and at T=1.4, as in experiment A.
Experiments used a space grid of 128-points.

Expt. Pof

A Gaussian
AO non-Gaussian
AQA non-Gaussian
AG Gaussian
AQGA non-Gaussian
AQGAG non-Gaussian
_____- --------------

I---------…___--__________--___-____
I erroneous data: First-guess

… : bac kg ro und
O : background
o : background
0 : analysis from A
1 at T=l.4 : background
1 at T=l.4 : analysis from A
1 at T=l.4 : analysis from AG

…-- - - - - - - - - - - - --__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Table 3. Experiments described in section 5.
Curves in Fig.14 to Fig.17 are labelled with Expt.
Observations were distributed as in A (Table.l) except as noted.
Experiments used a space grid of 64 points.

Expt Iteration method and modifications to parameters.

1A Newton.

lAM Newton, modified to not recalculate
inverse of J''(wi) each iteration.

2A Conjugate-gradient, with restarts.

3A Conjugate-gradient, with restarts,
transformed control variable (v).

4A Conjugate-gradient, with restarts,
alternating control variables (v & w).

lB As iA. 10 h observations at T=O, analysed in space only.

2B As 2A. 10 h observations at T=O, analysed in space only.

3B As 3A. 10 h observations at T=O, analysed in space only.

2AQ As 2A. Non-Gaussian observation penalty function.

3AQ As 3A. Non-Gaussian observation penalty function.

3AO As 3A. Fewer data (25 instead of 35).

3AT As 3A. Observations from higher resolution "truth" (expt A).

35S As 3A. Error variances reduced by factor of 10.

3AG As 3A. Background penalty omitted from J and J'.
…___ _________ _------
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LEGENDS FOR FIGURES.

Fig.l. Horizontal correlation of error of background wb used inexperiments. Cross-correlations between variables were assumed to bezero. All variables had the same auto-correlation.

Fig.2. Height fields, plotted at time T=0.O. Curves for eachexperiment are displaced. Each curve has the corresponding curve fromthe "truth" shown dashed. The observations used are shown as *, withthe height of the * showing 6 times the assumed standard deviation ofobservational error, and the width showing the horizontal gridlength.Graduation marks on the vertical scale are separated by one unit of(non-dimensional) h. Experiments shown are listed in table 1.

Fig.3. As Fig.2 for T=1.4.

Fig.4. As Fig.2 for T=2.B.

Fig.5. As Fig.2 for U at the centre of the grid, plotted against
time.

Fig.6. As Fig.2 for wind speed squared at T=0.0.

Fig.7. As Fig.2 for wind speed squared at T=1.4.

Fig.B. As Fig.2 for V at T=0.0, from experiments with zero Coriolis
parameter, so that V was a simple tracer.

Fig.9. As Fig.2 for V at T=1.4, from experiments with zero Coriolis
parameter, so that V was a simple tracer.

Fig.lO. As Fig.2 for V at T=2.B, from experiments with zero Coriolisparameter, so that V was a simple tracer.

Fig.11. Solid line: quadratic (L2) penalty function for a singleobservation, plotted against the normalized deviation
dy[i]/sqrt(0[i]). Dashed line: the equivalent penalty functionderived assuming that the observation has a 5%. chance of being useless
because of a gross error.

Fig.12. As Fig.2 for quality control experiments listed in Table.2.The experiment labels indicated their characteristics: Non-Gaussianerror distributions => Q in label. A gross error => G in label. Theanalysis used as first-guess is indicated at the end of label.

Fig.13. As Fig.3 for quality control experiments listed in Table.2.The experiment labels indicated their characteristics: Non-Gaussianerror distributions => Q in label. A gross error => G in label. Theanalysis used as first-guess is indicated at the end of label.

Fig.14. (a) Reduction factor in total penalty from that of backgroundfield, (b) Background penalty, normalized by background penalty of"truth", plotted against iteration, for various descent algorithms.Experiments (listed in Table.3) are: solid line - 1A, long dashes -1AM, dots - 2A, short dashes - 3A, dot dash - 4A.
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Fig.15. As Fig.14, for experiments started from a first guess equal
to the "truth".

Fig.16. As Fig.14, for linear, space-only analysis experiments.
Experiments (listed in Table.3) are: solid line - 18, dots - 2B, short
dashes - 3B.

Fig.17. As Fig.2, for experiments listed in Table.3, testing
approximations.

Fig.18. As Fig.17, for T=1.4.

Fig.19. As Fig.17, for T=2.8.

Fig.20. As Fig.14, for experiments investigating approximations.
Experiments (listed in Table.3) are: solid line - 3AS,ilong dashes -
3AT, dots - 3AG, short dashes - 3A.
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Fig.1. Horizontal correlation of error of background wb used in
experiments. Cross-correlations between variables were assumed to be
zero. Al1 variables had the same auto-correlation.
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HE[GHT RAT TO.O

BACKG'D

.0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0
01 ISTANCE/P I

Fig.2. Height fields, plotted at time T=O.O. Curves for each
experiment are displaced. Each curve has the corresponding curve from
the "truth" shown dotted, and the observations used shown as *. with
the height of the * showing 6 times the observational error and the
width showing the horizontal gridlength. Graduation marks on the
vertical scale are separated by one unit of (non-dimensional) h.
Experiments shown are listed in table 1.
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Fig.3. ss Fig.2 for 1-=1.4.
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Fig.4. As Fig.2 for T=2.83

- i
I

i
I

I
t

I
I
I
I

i
i
I

i

i
I

_

i

i

i
I

................. ................

, -------------

.......... ............. -- ............. . .

__. ~ .... ...... - . .. ...... _

-._ 



U MOMENTUM AT S=1. OP I
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T

JBACKG'D
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Fig-.5. As Fig.2 for U at the centre nf the grid. plotted against
t ie. - I
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Fig.6. As Fig.2 {or wind speed squared at T=O.O.
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Fig 7. As Fig.2 for wind speed squared at T=l.4.
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V MOMENTUM AT T=O.O

..... a m < BACKG'D

. . . 6 .8 1.0 1.2 1.4 1L 6 1 8 2.0
DISTANCE/PI

Fig.8. As Fig.2 for V at T=0.O, from experiments with zero Coriolisparameter, so that V was a simple tracer.
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V MOMENTUM RT T- .4

0 2 .4 6 .8 1.0

DISTANCE/P]

1.2 1.4 1. 6 1 .8 2.0

Fiq.9. As Fig.2 for V at T=1.4, from experiments wi
parameter, so that V was a simple tracer.
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V MOMENTUM AT T=2.8

D

0 .2 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0
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Fig.l©. As Fig.2 for V at T=2.8, from experiments with zero Coriolis
parameter, so that V was a simple tracer
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Fig. 11. Solid line: quadratic (L2) penalty function for a singleobservation, plotted against the normalized deviation
dyCi]/sqrt(OCi]). Dashed line: the equivalent penalty function
derived assuming that the observation has a 57. chance of being uselessti,cause of a gross error.
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HEIGHT AT T=O.O
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Fig.12. As Fig.2 for quality control experiments listed in Table.2.
Non-Gaussian error distributions =) Q in label. A gross error => G in
label. Analysis used as first guess indicated at end of label.

0

I

I s

I �

i
I

i

i

j



HEIGHT RT T=Il.

0 .2 ..6 .8 1.0 1.2 1.4 1.6 1.8 2.0
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Fig. 13. As Fig.3 for quality control experiments listed in Table.2.
Non-Gaussian error distributions => Q in label. A gross error => G in
label. Analysis used as first guess indicated at end of label.
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Fig. 17. As Fig.2, for experiments li isted in Table.3. testing
approximations.
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Fig. 1. As Fig. 17, for T=1.4.
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Fig 19. As Fig. 17, for T=2.8.
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