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~ Every once in a while a question arises about whether or not some
important terms have been omitted from the basic equations as we use
them in meteorology. The questions usually center -around metrical

terms, terms that involve the shape of the earth, especially its departure

from a perfect sphere. The concern is that, although omitted effects
may be small, they may be large enough and systematic enough to
accumulate in some way into important errors. My aim here is to
derive the equatiohs with rigor, so that all terms and effects can be
closely inspected. I won't draw any conclusions, except to say that
the rigorous derivation doesn't lead to any surprises.

Equations of motion

B

I start with the vector equations in Newtonian space.v

dV 1 '
_-G+_Vp=0 1
dt P (1)

- py
where t is time, V velocity, G pure gravity vector, p density, and
p pressure. Now, consider a frame of reference rotating with the earth,
Referring to the figure below, let the origin be at earth's center, the
z-axis be directed along the center of earth's rotation, x and y be the
pair of other coordinates in Newtonian space, and x' and y' in the

rotating frame,

wt




Then x' and y' are related to x and y according to

x' = xcos wt +y sin wt
y' = -x sin wt + y cos wt

where w is the magnitude of ?2,, Q is the rotation vector of the earth,
and t is the time since the x'-axis once coincided with the x-axis,
Representing the unit x- and y-vectors as Vx and Vy_, and likewise
for the unit x'- and y-vectors, by differentiating I get

Vx'= Vx cos wt + Vy sin wt
Vy' = -¥x sin wt + Vy cos wt

Consider any vector, :’-\., irarying in space'a.nd time. I expand it in

 terms of unit vectors and appropriate components,

K. = .A.x' VX"I" Ay' Vy' + Az Vz

and differentiate it,

(2)

dA dAg ., . dAyr dA, 4vx’ avy'  (3)
E‘: ._d_tx_ Ux! +7d_€X- VY' + Vz + A.xl at + AYI Ot

But, from (2)

dvx'. y(-vx sin ot + ¥y cos wt) = 0 Vy'= o x Vx'
t

and similarly,

1

—
= - Vx"= 0 x vy'

[o
.

The sum of the first three terms in the right hand member of (3)
are the substantial rate of change of the vector A with respect to time,
apparent to an observer from a location fixed in the rotating frame. '
I call such an apparent rate of change d' A/dt. Thus, since
Oxvz = w Vz X Vz =0,

dA _d'A . 5.2
dt  dt

Now, -
V= dR

dt
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where R is the radius vector from earth's center to the mass-point in
question. Applying the result (4), I find

:v' V‘+ﬁx§

where Vi = d'R/dt, the velocity relative to the rotating frame, and
QO XR is the velocity, at the same point, of the rotating frame. Applying
(4) again, I find

4y . (i +ox ('\7' +0x Ii)
dt dt .

dc;;‘" +20XV' +0x(Q xR)
With the last result, (1) becomes

§ —) - — - ] - :
%+ZQXV'+QX(QXR)—G‘+—:— Yp = 0 (5)

Now,-VXé:meX(QXﬁ).j

1]

0, and I may therefore write

Ax(0xR)-G=g ¥
where g = 980 cm secf‘i,_ a constant. The scalar r', then, is the geo-
potential height used in meteorology. Assuming mean sea level to be
a surface of constant r', I arbitrarily set r' = 0 there, and r' is then
specifically geopotential height above mean sea level, Consistent with
terminology of meteorology, I call-er \the ”grav1ty” vector, ”Gra.v1ty 1"
then, consists not only of "'"pure' gravity G the attractwn of the earth for
air, but also -0 x (Q % R), the centrifugal force due to earth's rotation,

Substitution into (5) gives

d|"7'l

+20x V' +gvr'+Lvp=o0 (6)
p

I now define unit vectors,

i=rcos ¢V
_]:rVqS

WA

where )\, 4, and r are the coordinates, east longitude, latitude, and distance
from earth's center, respectively. As I define them here, they are truly
spherical coordinates with 4 being the angle between Vr and the equatorial

_plane. In particular, latitude is not that used by the navigator, which is

the angle between the vertical, Vr', and the equatorial plane., My defini-
tion here is consistent with common practice in meteorology, particularly
in numerical weather prediction, I similarly define the three components
of motion



_ dn
u=rcos ¢ at
ve=rd$d

dt
w= a'r
dt

I choose the x'-axis to pass through the Greenwich meridian, and for
convenience introduce the parameter s, which is a cylindrical coordinate,

“namely, normal distance from the z-axis. Then

x' = s cos ),
y' = s sin )
S =rcos ¢
Z =r sin ¢
Thus,
Vx' = -1 sin ) + Vs cos )
Vy'= icos A + Vs sin 3
Vs =.-jsing +k cos ¢
Vz = jcos ¢ +ksiné

These may be inverted by pairs, the first two for i and Vs, the second
two .for j and k., Thus,

i=-Vx'sgin® + Vy' cos )
Vs = Vx' cos) + Vy' sin )
j =-VYs sind + Vz cos ¢ ’ (7)

k= Vscos¢d + Vz sin ¢
. The vector V' expanded is

V' =ui + vj + wk

and therefore,

a'v'_ da. dv,, dw 4%, 4y, dk
dt dt dt dt dt dt dt



But differentiating (7), we find after a little manipulation,

d'i

dt

(j tan 6 - k)

H s

A Yitang-Y x
dt r r

dk-Uu i+ ¥ j

dt r r .
Thus,
d'V': (d'u _yutangd w 3)1
dt dt r T
+ (d“v +u u tan ¢ + w X\Ij +<d'Wv - lf+v3> k
dt r r/] dt r (8)
Now
_ Q=w Vz =w (j cos é + k sin ¢)
" ( and
Qx V' =iw (-vsin ¢ + wcos ¢) _
+jwusingd ~-kw ucos ¢ (9)
With (8) and (9), the component equations of (6) become
du __usingd ., w
dt r cos ¢ r
-2wvsingd+2wwcos ¢
+ g Or' | +19p =0
rcos¢ 0y P rcoseddy) ' (10a.)

d‘v+uusin¢+vy
dt r cos @ T

+2 w u sin é

g, 18 _o | | (10b)
p -




d'w _u®+v®
dt r

-2wucos ¢

+glr'y 1 9p= g | (10¢c)
Jr p Or :

Now, the unit vector k = Vr is not a vertically directed vector, but
Vr' is, Nor are differentiations with respect.to ) and ¢ in (10) along a
horizontal surface, which is defined as a surface of constant r', not
constant r. I will now transform the derivatives from X, &, r-space to
A ¢,r'-space. Primed partial derivatives will have the meaning:

LI |

on <ax.>¢.,r' (11a)

ol - (2_

- )

or' or' \, & : (llc) |
. J“» 4 The transformation formulas used are

and thus, (10) become

d'u - yusin ¢ +u W
dt r cos ¢ r

~2wvsing+2wwecos ¢

+123p
p r cos ¢ o)

e (12a)
r cos ¢ 9) Or p ar' :




ARRIL

‘-i—-"-r+u'——-_u5in¢+v‘ﬁ
dt r cos ¢ r

"+ 2 p» using

+1 3'p
p rd¢
9'r or' 19 - 173
- — +_'_R =0 12b
rd¢d dr (g p _8r'> (12b)

—2wucos¢‘

(I2¢c)

]
o

+- a_‘r_ '_ (g +l §B> =
or p Or'

7 ""We are not quite finished at this point, because w is not generally Wwell
‘related to the "vertical motion' used in meteorology. The substantial

derivative applied to a scalar may be expanded in terms of partial deriv-
atives in t, 3, 4, r'-space thusly, '

i.:i':_ai+ua' — +v2 +w'® _ (13)
dt dt ot r cos ¢ O) r 0¢ or'

where w' = dr'/dt, and the prime on the partial in time distinguishes it
from the local partial in Newtonian space, Now,

wedr _ 8 +v @ 4 gfr (14)
dt r cos ¢ O3 r ¢ or!

The first term in the right-hand-most member is very small, depending
only on u and variations of gravity along a latitude circle, The next term,
however, is not generally small compared to the last, on the scales with
which numerical weather prediction presently deals, The International
Fllipsoid of Reference has a flattening of 1/297, which is a close estimate
of 3'r/(rd¢) at 45° latitude. A northerly wind of 20 m sec ! yields about

7 cm sec ! for that term there, a large vertical motion, but not beyond
the order of magnitude of w' on the storm scale and larger, It is w', of
course, that is the 'vertical motion' of meteorology., The departure



of 8r/dr' from unity, by the way, can be eétimated by comparing the
variation of the gravitational force with the constant g = 980 cm sec™®,
The departure from unity turns out to be generally less than 0, 3%,

The hydrostatic approximation is obtained by neglecting the first

three terms in (12¢):

g+l QL:O
p Or'

With this approximation, the last terms in (12a) and (12b) vanish,. In

'meteorology, the terms in (12a) and (12b) in which w appears explicitly

are also usually neglected as being very small,

There are other small aspects of (12) that are not always realized.
The velocity components u and v are not quite horizontal, but their
variation from the horizontal is less than 1/297 rad, An estimate of their
departure from horizontal components is l-cos(1/297), less than O, 0006%.
The partial derivatives (11a) and (11b) divided by r cos ¢ and r, respectively,
are not quite partials with respect to distance'in the horizontal, These
appear ‘explicitlyin (12a) and (12b) operating on p, but are also implicit
in the first terms of those equations, through (13), - The variation of the
differentiated variable is taken on a-horizontal surface, a geopotential
surface, but the 'variation of distance is taken on-a coincident sphere
concentric with earth's center, - Departures from '"horizontal' derivatives
can be estimated again by 1-coB(1/297), less than 0, 0006%. Similarly
the partial(llc) is not taken along the vertical, but has a similarly small
departure from a vertical derivative with respect to r',

The equation of continuitjr_

I start withthe equation in the form

i&+ v.,,,__,z
a p V=20

80 t_l_."xat the problem centers around divergence of velocity. I first note that

V-(OxR) =0, and therefore v+ ¥ = y- V', and

1do 9. yr 2 0 |
p dt '
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Now,

N
<
I

Ve(ui + vj + wk) .
i-Va+j eV + keVw
tuVeid+vvej+wvek

1]

But, taking the divergence of (7), we find after a little manipulation,

Vei= 0
V- j=z8ingd
r cos ¢ )
'V'_kz-%-
Thus,
v.-;—'u - 8u +av' + 0w _vsind 4 2w _ (15)

rcosdd) rdp O8r rcoséd r

Now consider the quantity

9r r ror or ror!

From (14), after some manipulation, we find

9rw _ Or'd fu O'r 4y 'ty rw'il.')
rdr 9r r dr'\ cos oA\ ¢ or!'
_8ud'r L Ovar

dr rcos $p 8) Or r o4

+8w'  w'8r ; 8r'd Br
ar' r O8r' &r dt 9r'

and the first two terms in the right hand member of (15) when transformed
to )\, d, r"-space are

du +8v
rcos $ 0\ r 8¢

d'u + a'v
rcos § 9\ r 84

_ 9ud'r _9va'r
dr r cos ¢ 8)\ Or r 9¢
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With the last two results, (15) becomes

-

vyl = 2'u +9'v_48w' _vsin &
rcos ¢ 8 1r 84 or' r cos ¢

; r 9r' Or dt or'

In meteorology, the last three terms are usually neglected. On
the scales numerical weather prediction deals with, the divergence

V- V' is of the order 1075 sec™, roughly 1000 times larger than those
terms. For example, for w' = 10 cm sec 1 . .

' - -
.".‘.’N.!"_?}l ~2 %x107% gec™
r r Or'

To evaluate the last term, I note that

S d%r_g 1
ar' g'

where g' is the magnitude of the gravity vector including the centrifugal
force of earth's rotation, An approximation giving the variation of g'
with latitude is

g' = g(1-0. 003 cos 24)
and -with altitude in cm,

gl = g(l-3 x10™°r")

Now,

__3r'i_ﬂa;_1_(i1 9'g' +v2g 4w 3g'>

9r dt or' g r cos ¢ 93 r 84 - 9!

The first term on the right hand side is very small, depending only on
u and the variation of-g' along a latitude circle. With v = 20 m sec™t
and w' =10 cm sec™?, the last two terms are

vo'gl ,2x10® gec?
g''r dd

W_‘_g!_~3 X].O-g sec-l
g' or'
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Other basic equations

The other basic meteorological equations that contain derivatives,
and therefore depend on choice of coordinates and the shape of the earth

are
do _
dt :
/29_;0
dt

where € is potential temperature and q is specific humidity, In meteorology,
in effect, the substantial derivatives are expanded with (13), and therefore
no direct error whatsoever is involved,
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Supplement to NMC Office Note 139
Frederick G. Shuman
JULY 1979

In Office Note 139,t0op of p. 8, I perhaps too summarily disposed of

0=31" |g+13pi-pg dr'y 1 3p
or [g |" 83 r p 9r (16)
without showing how closely it approximates the "true" hydrostatic condition.

To show this, I invent a set of orthogonal coordinates, one of which is r'.
For illustration purposes, I neglect the variation of r' with A, taking into

- account only the oblateness of geopotential surfaces. I adopt A, then, for

another of the ortohogonal set, and use ¢' to indicate the third coordinate of
the orthogonal set. The set consists, then, of A, ¢!, r'.

Let h, , h, be so defined that h,V ¢', h, Vr' are unit vectors. Now, the
gravity vector, including centrifugal force due to earth's rotation, is

-g' h,Vr'=-g vr

so that _ :
_ : (17)
h3 - g‘" A' ' »
From the figure, drawn in a - Vr '
A = constant plane,I note that : ‘} hyvrt
h,V¢'
e
hyV r' . Vr = h, V ¢" «xV¢ = cos ¢ (18a)
"h,V ¢' * Vr=-h,Vr' - rVg¢=since (18b)

From these, I draw
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8¢t 3T _ o dr'_ 3¢ _ . ‘
29T THyagr . Meggg T Tpgyr SSine (18b)

where all the partials have conventional meanings, except

3 [a ]
3r T ar’
A, ¢!

I invent this symbolism here because I have already made the following
definition (11c),

3 _{»
3r' T |3
Ao

Subscripts on the partials here, and elsewhere, denote the variables held
constant in differentiation.

Equations (17) and (19a) .give

or' _
g x-=8'cose (20)

I expand Vp,

= |9 ) 9!
Vp = [TEJ VA + —a-%v¢'§-—a-% vr!
",.-¢'1"

and take its dot product with Vr,

Vp+Vr =3P  h,v¢nvr+2P: b, vr. Ve
: h, 3¢' h;oar'.
Or, by (18),
QE = a' 8 1
5T —-‘9—--—1,13 T Cos € + h_z%_q)‘ sin ¢ | [21)

Equations (20) and (21) give

ar' L1 %p_ f,3'p e+ B &
B o & [g hpor) o ° 7 H 5 O ¢

But the "true" hydrostatic condition involves the derivative of p in the true
vertical, and thus is expressed by
0=g' + 2R
h,; ar’
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Therefore, instead of zero, the expression in (16) is

or' , 1 op _ 3p
g3}+p ar  h20¢°

But € < 1/297 rad, so even with a geostrophic component of 100 m sec™,

sin € - (22)

1 cmosec”

1 ap : . 2
o h,o¢ I €~ 757

which is to be ddm;iifed with g = 980 cm sec™ 2. N'é‘gl'edt of this small term - —

in (12c) is therefore justified.

The next question is, what about neglecting the hydrostatic terms in
(12b)? From the second of the three transformation formulas following (11)
and from (19), :

dr _ _ hj; or! =t
ro¢ =~  TO5e ro¢  amnE

From this and (22), the hydrostatic terms in (12b) are therefore

dr o' 1 p)_1 3 :

m 51: [g + B ar'J = B IT‘ZEEFSIII.E":HHE
which is about 10™° times < fu, where Uy is the geostrophic wind component,
and about 10~* times character%stic valu€s of the acceleration terms in (12b).

Thus its neglect is also justified in (12b).




