L

U.S. DEPARTMENT OF COMMERCE :
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NATIONAL WEATHER SERVICE
NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 134

Variational Analysis in Pressure Coordinates

Norman Phillips
Development Division

JANUARY 1977



Variational Analysis in Pressure Coordinates

by

N. Phillips

Table of Contents

The variational infegral and constraint 1
Variational algebra 3
 Separation of variables : 6
Response to a localized distribution of vai‘ %i&;

Effect of a horizontal variation in analysis weights;23
Iterative solution methods ’29
Use of spherical harmonics 555;

Initial field of divergence ‘f;if



Variational Analysis in Pressure Coordinates

1. The variational integral and constraint

The idea is to explicitlﬁ introduce some form of balance equation as
a constraint on hemispheric or globai analyses. In particular, the Flattery
type of analysis ignores the nonlinéar relation between wind and geo-
potential found in the gradient wind relation or in the balance equation.
We can do this by means of a variational analysis, following the ideas of

Sasaki (J. Met. Soc. Japan, 1958, vol. 36, No. 3, pp. 1-88) and Stephens

(J. App. Meteor., 1970, vol. 9, pp. 737-739). 1In this procedure, we change

: o
an initial analysis of geopotential and streamfunction, denoted by ¢ and
o  f f
IP' to a final analysis ¢ » 'P .
£ o ‘-
¢ = 47+ 8,
£ _ ;0 7
AN N &

' -The final fields satisfy a dynamic constraint and the spatially integréted

1

. .squares of ‘P and. V¥ - are minimized.

Consider K pressure surfaces at which ¢ and \(J are given,

k=1,...,K. We can form K-1 "temperatures"

T’l = 7k(¢h" ¢h~'l ) 3 k= 21-—JK

- (1.1)
Yb.'-: [R’e"‘/Ph-o/Ph)] .
As the constraint, iwe take the balance equation
V¢ -v. £v¢ + . [ L7 (ve)f-v'y v¢] = o
2 _ | ) (1.2)
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and linearize it to the extent of evaluating the nonlinear term only with

[ -]
the original streamfunction ¥ . Thus

'
V¢ - v foy’ & V~ﬁo =0,

A = V0- £v° s 2U(vpY -V e’ @

] o
A is a known quantity, measuring the extent to which ¢ and ¢¢
A .
do not satisfy (1.2).
The variational problem is set up now as the problem of minimizing

the area integral of

_ , K P 4 2
J = ?fh(vd'h)zf%:ﬁh[";) + o (&)
= =2

K

2. ¢ / ° (1.4)
+ 2 Z P [vdsh-v.#v«l»b + VA A] .

hzi
’ 7

In this expression TL & th (¢h_¢h") , and the variables & =« (4, ’-)J
B=pls, g, 4,) , and v= 1%, d 1’) are positive analysis weights.
P (¥, ’/‘f) is a Lagrange multiplier (as yet unknown). The weights

« , # and ¥ are set inversely proportional to the assumed error in

the corresponding original fields
. "
« « (847)

-2
< (sT°)
A ? (1.5)

-2
+ « (s9¢°) .
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For example, a highly accurate T° field corresponds to a small 6T°, a
large B, and a tendency to keep T# small in the process of minimizing
(1.4).

Before passing on to the variational details, it can be pointed out
that the brutal step of igndring 'Pl in the vector ‘l: of (1.3)--which
avoids the usual balance equation ellipticity problem~-can be softened
somewhat ‘if desired by iterating the entire analysis cycle one or more

0 0 f f
times with ¢ and f’ replaced by successive values of ¢ and ¥ .

2. Variational balgeb ra

/

Let 8 . denote changes in lb . The corresponding change 'in I

L}

is twice

[-ﬂzT;'Zz rad’'[§ + o, ve;
IR A S P TIR  CRR I LALET Y

The divergence term integrates out on the sphere.  On the Northern Hemi-

sphere it vanishes if, at the equator,

i) P, =0 and 54;/ z o, ' (2.1a3)
or v

2

11) ?p /2600 aud 2(84')/00 =0. (2.1b)

’
An extremum with respect to 6, therefore requires that

2 l- 4 ¢ v (2;2)
(“*(321})43 5;,?1472 +Vf3’ o0 a



A

/
Now let & denote changes in ¢h s k= 2,...,K. Calculations similar
to those above lead to

For k = 2,...,K-1:

{ 2 2 ’ P L
~Be Y Puey + (Bt "By beri) B~ Bray et P TV = 0 (2.2b)
For k = K:
2 ¢! tid v VP, =
—ﬁK ?K 4’“_, + ﬂ“ « Pic tV P =9 (2.2¢)

with boundary conditions equivalent to (2.1) on P,  and 6¢2 .
Finally, let § denote a variation in V‘; . The corresponding
variation of I 1s twice
fbv-p;.vs-fhv.{—v& =
= — [t e rvtup ]S
88 v (s8],

The divergence term disappears on integration for the globe. TIf we treat

only the Northern Hemisphere, its vanishing requires at the equator,

1) 'atl)h /39 =0, ‘ (2.3a)
Or'
1) 61#2 T o . (2.3b)

leaving the equation

. 4, 99, +V-f A 2.4)
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Equations (2.2a), (2.2b), (2.2¢), (2.4) and the balance equation (1.3)

constitute the system of 3K equations to determine ‘P' , {47’ , and @

at k=1,...,K given a knowledge of o |, F , ¥ and V'ﬁn .
When the Northern Hemisphere alone is considered, thé set of

equatorial boundary conditions in (2.1b) and in (2.3b) are most suitable,

since ¥ as an odd function of latitude and ¢ as an even function

of latitﬁde is most realistic‘. In this case P is an even function

also as far as the boundary coﬁdition (2.1) is concerned. For simplicity

and definiteness we can in the hemispheric case consider

¢ p,«, 8,7 ‘as even functions of latitude, and
J 7 s - (2 5)
‘/' as an odd function.
The balance equation (1.3) is consistent with these and poses no further
restriction (except that the hemispheric integral of v.A° vanish).
. -

Equations (2.2a)-(2.2¢), when integrated over the hemisphere, place

/
constraints on hemispheric integrals of (Sk 4’& :

If B ¥, dbem < o

(2.6)
Hemispheric integration of '(2.4) shows that the line integral
T S
& ‘2_&] d? =o. .
k 26 2.7)
° 8=o
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If 41 ‘were independent of'longitude at the equator, this would be

equivalent to constraining the horizontally averaged vorticity to be

preserved: ' . »
Jf v’tP'J‘lemv = j

3. Separation of variables

&=o

A considerable step toward making solution of the set (1.3), (2.23)~

(2.2¢), and (2.4) tractable is to simplify the distribution of analysis "

weights. We shall assume

—

A (yy) = & times
Baup = B times
1*(’,’)*) = 1"‘ éloﬂe.i

ﬁ'(«,,) 2

1316”7’) »

1’(4,,)

Where the horizontal functlons are nondlmen81ona1 and p031t1ve.

(3.1)

To ‘arrive at tﬁis spec1f1cafion*—deflne --——«<l—~f—*4’***‘%’#'

P~ by

k=1: 11 = e ————

2 (s

8, =

associated with the wind and temperature values ( p =

’

Pu.y = Pret

2 (sa))*

Preq — PR

T

where the numerators express a weighting with the pressure thickness

(3.2)

press(mb) + 1000 ).
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Given these three-dimensional fields we choose fh and /3h to be the

. ) , P
horizontal averages of (3.2), and define Y and (5 by

K
ﬁ',fdf,g)‘ = K™ '%'(fh /'Yh) J

: ‘ K _ (3.3)
ol ¥
B'a,y) = k-t 22 (BhZ G,) .
&=,
For & , we first define a field |
‘ o o &
= - " (&
“= (h-r) /,( “ (3.4a)
Where_ 64;’ (#,4) 1is the anaiysis error in 4*0 at k =1. o« 1is
obﬁai‘ned tﬁen by
o = spatial average of (e /@8’) ‘ (3.4b)

(5,);and, (ST)L vafy by a factor of about 10 from data-rich areas to
. the data-poor oceanic areas which occupy most of the area. fr and 8 ’
will theréfore vary from a minimum of (say) 0.2 over the oceans to 2 or
3 overv the continents, but will each have é horizontal average of omne.
If & in (3.4a) were equated to B2 , we would have 84, = R 57;4 (r/P2).
54, is also equivalént to (RT/;) times &P (sea~level). TFor P, = 1
and P, = .85, a 6’1‘2 of 0.6 deg corresponds to 5&, = 26.6 m%?sec™? and
Sp(sea level) = 0.34 mb. We may therefore expect approximate equalj_ty of

«& with ﬂz , since 0.6 deg and .34 mb are both realistic{féf":‘gjbrbrc.lﬂ ana1y51s | \

‘fegions.

It is convenient to change to nondimensional variables and operators
at this point, using the radius of the earth (a) and (1/29Q) (Q = the earth's

angular velocity) as the length and time units. To be specific we set



Nondimensional Dimensional

i

) 4% J% /e

g

v = a YV

P, =/aiF

¢, -fif /20

(3.5)

The square roots of *} are introduced to produce symmetry Of the

matrix GJL in (3.6c) below.

Equation (1.3) becomes

V‘gék —- s 5@ V‘!’k = -(a-fi":/z.e)v.ﬁ

3

o

k

Equation (2.4) becomes

. ?'thh + U sing V/Lk = o

The K equations (2.2a), (2.2b), and (2.2c) become

K
-3 7
V2, +ﬁ/Z=, %ty =

= A e

(3.6Db)

(3.6c)
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. %Lis the symmetric tri-diagonal matrix

d -a, 0 o 0‘\
/‘a‘z d, -a, o
o ~¢s %3 —2y ; |
\\\ o (3.7
—ay N4 -a
\o 6 =& dk
in which the diagonal terms are

4= [4n%P(T+E ] /T,

dh 2.0, Kot = [q'a':a't(.a;t:*ghwtht;)] / fh )

="’

d, = [1ola’p v [/ 7, (3.82)

~and the off-diagonal terms are
~fa

a = 4dn a.'pk t, (1; ?ﬁ_,) . (3.8b)

h=2,--,k

B.l L has K positive eigenvalues 2 ,

%-— B.ll. e-‘_-;‘ = % B}x.l ek,‘ = 2.1’ %',

and orthogonal eigenvectors ehJ.:

(3.9
Z % = S

VIt can be ‘shqwn that K _
e - : 2 s 2
=t
where iz

® Wt ey (R)
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We expand in these eigenvectors:

(Hj , 5‘}, Rj, F;.) = %-ehj(d)k,’pk:ah)Ak) ’ (3.10a)

B " aA\=2¢€.(H. & R _FE
(4’1.)%:”'&;“4&), %: "‘J( Jr 43I J) ’ (3.10b)
(et Rty i)

Equations (3.6a)-(3.6c) now become a set of K independent two-dimensional

problems (j = 1,... ’K)j}i}‘;

'H - VesmoV5 = - F | (3.11a)
J J J 3 '

V- 3”\7.9] v+ Vesmé VK, = 9, © (3.11b)

szj. 'f'ﬁ,]'H] o
(3.11¢)

These are the equations which must be solved in the horizontal coordinates.
Variable coefficients on. the left side consist of sin& ’, 3'{', and (Sl,
a,' being a constant for each J |

Table T showg- the values of ?j’ and ekj which exist for the case in’
which the K pressure levels are those of the 12 standard pressure levels
p = 1., 0.85, 0.7, 0.5, 0.4, 0.3, 0.25, 0.2, 0.15, 0.1, 0.07, and 0.05,
with uniform values ‘at all k of (8T)2 = (0.6 deg)2 and (8v)2 = (2.5 m sec—i)z,

and with 54‘ equal to 26 m?sec 2., (These values are probably typical of

‘analysis errors in data-rich regions,) .



Table I. " Values of Aj and e for 12 standard pressure levels. (8T)2 = (0.6 deg)2, (8v)2 = (2.5 m sec_ff2
J . '
and (8¢,)2 = (26 m?sec”2)2. Computed with double precision arithmetic on an IBM 360/195, but

e, values are truncated for brevity.
]

1 2 '3 4 5 6
P A 107.83 368.76 925.37 1705.2 2716.9 3798.9
1.00  ef. .020 .048 : .078 .099 .135 .126
.85 e, .057 .135 .213 262 L343 .308
.70 egd .104 .238 344 372 .397 .270
.50 e, 179 .367 .396 209 -.121 ~.398
.40 eg) .199 .360 .256 -.046 ~-.339 - -.283
.30 egd . 240 346 .032 -.321 -.277 .239
.25 ey .234 276 -.105 -.324 -.046 .309
.20 egd : .285 .239 © =275 ~.265 .257 .158 1,
.15 eqd .356 .137 - 441 - .038 b4k -.366 =
.10 e1ds 412 -.099 ~ -.360 .521 ~.247 =134
.07 e113” 389 -.277 ~-.003 .253 -.357 467
.05 e12; 522 ~.548 443 ~.349 .215 (=176
7 8 9 10 11 12
p Ayt © 4593.9 6600.7 8860.6 10911.7 13948.9 32308.1
1.00 ey, .057 .081 .136 .343 .008 .895
.85 exd .135 174 .261 .586 .010 -.439
.70 ey .090 .022 -.130 . -.643 -.022 .075
.50 eyd -.241 -.398 ~.398 .286 .063 ~.005
.40 ec’ -.058 . 256 .658 ~.179 -.185 .616 D-3
.30 egd <254 .392 ~.314 .022 517 -.629 D-4
.25 e 146 -.148 ~.213 .080 -.748 124 D-4
220 egd ~.130 -.582 .370 ~-.066 358 -.172 D-5
.15 eyl -.317 445 -.153 .020 -.075 .130 D-6
.10 elt. .562 -.152 .031 ~-.003 .008 -.541 D-8
.07 CI -.599 .061 -.007 .514 D-3 -.001 .251 D-9
.05 e;,’ .177 -.012 .001 ~.559 D-4 .849 D-4 ~.867 D-11
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el

. [The determinant of Bkz is readily shown to equal

: 74 :. t ’ ‘.... 2
det §, = (anq)t 21022 55 ”f‘
. 1’,' ‘; . .‘; " s e of‘

- : *
Setting of equal to zero--equivalent to ignoring ot ( ‘) in the

integrand (1.4)--would therefore introduce one zero value for ﬂj

This solution in (3.11) has zero Rj and Sj——showing that all adjustment
in (3.11a) for this degenerate mode occurs in the geopotential field Hj'
The corresponding eigenvalue € , 1is equal to ( ‘-V; / z“ a‘i ')'/z,. J
'4\)' in Table I e\'ridently acts as the square of a vertical wave
number, since the number of sign changes in each eigenvector increases
steadily from zero to eleven as ’I‘J increases monotonically with j.
. [The last eigenvector is unique in its rapid’fall off in magnitude for
k > 1. To the extent that it resembles a delta function Sh' , it
implies that equations (3.11) could almost be written directly for *k .

‘Pk s /Lk and Ak at level Lk = 1, with ?J = ?,z . This isolation
seems undesirable. Iﬁ this example 5¢ , was chosen to
correspond to a son_le_what optimistic sea-level pressure error of only 1/3 mb.
Larger values of 54_?‘ (smaller # ) will reduce the semi-isolation of
layer k = 1 that is present in Table T, and‘should be considered carefully.]

The set of equations (3.11) is easily manipulated into the following

relation

¥ (95), +6°2. 0" R.F -,v.-[-,fma(svn -RUS)+¥'sAS rnvn-tﬂm‘] (3.12)
J PR | Jd J"
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showing that the horizontally iﬁtegrated modal squared amplitude is
determined by the horizontal average of RF. The equivalent statement

for the original variables f/ and ¢’ is best derived from (1.3), (2.2a),
(2.2b), (2.2¢), and (2.4). This can be done without the separation
assumption (3.1) for the weights 0( s B 7 . (2.4) is multiplied ’by

-4‘; and (1.3) is multipliéd By fh to produce, for each k, the relation

2
TV - VY = g va]
| S , y , (3.13)
+V'[‘F('P Vf-fV¢')+f¢V¢ *fvé"#Vf]A .

If ;ﬂ'* temporarily denotes ﬂh 2’: » equations (2.2a), (2.2b) and (2.2¢)

can be manipulated into the form
K d’l' vzr' s - ﬁllé(ﬁ"*')"‘*"])
KTt == G ) AD] i),
b 4?:( Vi = 4’; I‘&x (¢;f¢:’c--» )J;
When these are introduced into (3.13) and the result summed over k, we obtain

K ‘ R
‘ 7% P 2
Eqmq) + 404D +£ﬁ,‘(7’£)

K .
= JAC €3.14)
= gfb VA, ‘OA |

where t@& indicates a collection of ¥». terms which disappear on

horizontal integration. This equation, like its specialized modal counter-
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part (3.12), shows how the Lagrange multiplier P implicitly, through
o :
its organization with respect to V'L‘ , acts to determine the resulting

minimum integrated value of the original integrand (1.4).

; ; » A°
4, Response to a localized distribution of v'a.

The nature of the solutions of (3.10) and (3.11) can be investigated
under certain simplified conditions. The most fruitful simplification is

to treat sin® as a constant in (3.11). At the same time, let us for

~—

convenience define ;
AJ s ?
.= sin® S.
Aj o R

. 2 ‘ (4.1)
-4:'-— Sty & RJ 5
. - & -
45 iy —J ab .
(3.11) then beéomes
2 2

.-V =-F

Vl,) < 7

(4.2)

: o,
¥ Qa. VA = o
VVA.J-r/IJ 3

¢ 2
Y?fa,. + 2 0. ,dt. = 0.
;e G e

We will use these, in combination with (3.10)) to discuss two effects.
‘ r ‘ ' . . . ;
Effects of irregularities in p and ¢ are discussed in section 5. In

this section we determine the response to a localized "point source" of
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’ r3
the forcing function V:A" . We do this under the further assumption
P

that {}’: 4” = | . Equations (4.2) then reduce to.

Vzal"'- VzAJ. = - ’S" R

vz":“ ___0';2’4’. - d) (4.3)
which combine into

V’JJ- —g?’i)- = - 5 - (4.4
We see already that the equation for each j has associated with it

a characteristic length Lj' In dimensional units this is

L. = & .

J - .
0} Sin & .‘/ ﬂJ

For sin 8 =98.707, the eigenvalues of Table I produce values of Lj

ranging from Lip, = 50 km to L1 = 868 km. In other words, the highly

L}

oscillatory vertical structure represented by eﬁdl in Table I, if
excited at a particular horizontal location (io,yo), will disappear
rapidly with distance horizontally from (x55Y5)- The smooth vértical
field eh' in Table I, however, will extend considerably further in
the horizontai. This arrangement of response seems desirable and

suggests that the form for T in (1.4) is satisfactory.
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We consider now the circulatory symmetric case (with x denoting the

radial coordinate) produced by

o £ 4‘ < % 3 F = F - constant
° / /e (4.5)
A, L& ¥ S : Fi = o,

The dlfferentlal equatlon 1s

(44 __.:. -0 l ~-F
J 4
and the solution that malntalns continuity of .»L and J»‘.J /J ¥

at 4:410 , and which disappears as H» 00 , is

#<Hy ,4}-: [t+Uwmn] E, /5

, ' o (4.63)
wrwy: A= W K /5
o ..
| Uite) = -g4, K, (59,) I, (54) .

W.ix) = G4, L (50) K (5.

Iy Il’ KO and K1 are the modified Bessel 'fuflctions described on pages
374-379 of Abramowitz and Stegun (1964) .‘/ ‘\{Dj is negative with a
maximum magnitude of 1 at #=4, , 0;-4‘0"9 % . V\{, is ‘positive. Its
maximum value (reached at #:4/, ) increases from O to 0.5 as J;'4,

varies from ©O to @ ., The general character 6f the solution (4.6a)

. : 2
is a simple bell-shaped curve, having a discontinuity in d '\/44‘2

vHandbook of Mathematical Functions. National Bureau of Standards, June 1964.
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at 4‘0 ./

Let us define the original forcing function as having the special

form
o
. o
Z.é.‘.’ = constant = (V - )1 .7
£ : £*
center

for 4 ¢ 1‘, at one level, k = %, zero everywhere ét all other levels
and also zero aF level % for A 24, . If Vz¢‘~ + Vz¢‘/ V-‘éo
has the order of magnitude (velocity/horizontal scale length)2 and it
will tend to be negative in cyclonic flow, positive in anticyclonic flow.
We might expect (4.7) to be aS"large as ~(.25)2 at the tropopause in a
major middle-latitude trough region, and perhaps even closer to one in
magnitude in sharp curved jets.

From (3.10b) and (3.6a) we “féﬁe‘:r:ix]find that

F(ar4)=0, (4.8)

. 7 ®
E ¢ fa o = v.4
»J.(op(,qo)aF‘j:o = __a_"e‘(&) (w)[ s

1 2 \
VFor A‘o-) ok s ‘A{’ - 2 {‘;'4‘,) Ko(:‘f”‘)’ suggesting an alternate
formulation in which 5'0 4%1 is kept fixed, but 4, is set equal

to zero:

] 2
ket 50 Ko, sens

This has a logarithmic singularity at 0‘;-4& > ¢ . This is g true

]

"point source," but seems less satisfactory for a quantitative interprétation.
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where our choice of the S—ingle level at which \7-20 is not zero
prescribes the value of %. This is consistent with (4.5).

As measures of the response to this localiaed foreing, we first
consider the change in geestrqphic vorticity and the change in actual

vorticity, both nondimensiqnalized through a division by f. We first find;

at level k, that

v (¢he) s 2= 2 6 VY

dii

I f o) 'R-ﬂ- .
‘F’VJ(‘P .P)é = *_& ;e“-jv‘

(v2 is dimensional on the left s1de, nondimensional on the right side.)

4:\

Using (4.3), (4.6), and (4.8), we obtain

(654 ANV ;6 (W),
Juu ) ( } ) F J3 v

(7 €

centa’ (4.9)
- iy .
1 VA
Lo te) o (2] (81 T egry,w)
f\ \ 00 ‘ f ‘f‘l n
\ \(\ [ ccnﬁr

in which the first term in the parenthetical expression is used for # <4/.'
, A ° .

and the second for /g)fa. The subscript "center" on Vcﬁ is a

reminder that it is the constant value assumed for < #, at level 1&.

These expressions are most easily interpreted if we fix attention on

a particular case--a small isoiaﬁ:ed "cyclonic" region (4<4, ) in which

[ 4 . R
‘,,7"&“ yi is negative From (1.2) we can imagine this as resulting from
“Vté‘; not belng 1arge enough (algebralcally) or from ¥ "’l being too

large (algebralcally) to balance the nonllnear 'P terms in (1.2).
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Distribution
of vorticity,
height and
temperature
changes

resulting from

2 ﬁi‘, = .‘:
. ]
at level 7

(250 mb) in

the circular

(indicated by

the open bars).

A ST imes seesT o e L

. RS RO
"'-'Ezl,_;|‘g££g TIMES VOR CHG.

145

1 L 8 01T e
217 1F s 15 14
338 3T 35 32 - 28
4130 127 ixj 103 86
5387 3715 338 219 205
161549 (1516 1401 1185 630
7 36;0.4 37;8" 4219 5'141 1777
a‘ 1;66 1629 -1503 1230 " 691
s 525 509 .463 386 292
‘157 iéqf 1131 - 113

&

12

24 -

638

134

165, ...~

~1681

‘204

201

T 95

5

10

20

51

13
25

18

=334

20

12

~124 .

=124

3. 52
. ’ : .
4 =125 -i12
5 ~235’ {99
w6 =575 Flies
. ' B .
(T -1221 -1197 -1120 =980~ -759-
8 ~649  -638 =605 =553  -488
9 364 -361% -351°) >335 . ~314
10 =218 --217 314 <209 -202
1l -158 -157 =156 <154 . -151
~124 =122 -121

-106
-182
.—363
-549
-421
-291
-i?h

~147

-119

=134
-Zgé
-275
-267
;222

=166

-133

-111

(:; 1HEIGHT CHG IN CH ™

S s s+

1. 8.-38 71 6 6 5 e 3 2

2. .17 17 16 .- 15 14 12 10 9 7 5

‘3 .38 31 35 32 28 24 20 16 13 9

- } ) - -

4 130 127 - 117 103 8 . &8 .5, 37 25 16 .
15387 375 338 %9 zas 136’ 80 42 . 18 T4 ]
P o .

j 6 1549 -1516 1401 1145 = 630 .. 165 .-15 -78 =31 . ~86
‘1.7 -6308% 5351 <5780 <#852 —3202 ~158L -930 ~542 ~334 -217

8 1666° 1629, 1503 1230 691 204 7 -65 =86 =35

9’525, 509 . 462 - 386 292 201 129 77 a1

1077157 "1564° 145 131 113 95 77 6L ' 47 35
1L, 68 - 67 . &5 6L 56 5L - 45. 39. ‘33 . 28

12 34 0 34 33 327 31 29 27 25 22 20

l_ i ] .l‘ l ' J," A l f
o 100 - 200 300 Y00
() -
L2 =3 -3 a3 -2 i m2e =2 =2 te2.  e20 0 -2

3 B I T A T | -3 -3 -3 a3, -2

4 EY S -7 -5 -6 E) -5 -5 LTI

5 =16 *16. -15 -l4 -13  -11. -10 -8 -7

6 . =40 <-39. -3 -32 ' -26. =21. ~16 =13 ~10

7. -121 -118 ~109- =92 - -62. <-3%. -20 -13 -9

1 .
.87 -87 - 85 78 65 &l 13 & 3 0

9. 33. 32 38 25 20 15 ‘11 7 5
10 120 12 11 10 s . -8 - 4
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Considering first the outer region A >N, , we see from (4.9) that
the two vorticity changes za‘.re, equal. In this way the presumed satisfaction
of (1.2) at M>4¢o is maintained. At the forcing level itself (k = ),
the fact that \VJ and ehj ej;,;ifare both positive shows that Vzdb
and V"l" are both decreased in this outer region. In other words, the
original "deficit" of V‘¢ in the céntral region at level £ is dispersed
laterally outward, but without kdestroying the balance present originally
in the outer fegion.

At the interface 4 =4, , V"‘P’ﬂ is continuous, but 72¢, ‘has a

: :
discontinuity. In the central region, again at level k = 2, ¥ t{ is

o
increased in this example, since both V’A and 'UJ- are negative.

! /

V!(Pl is decreased (l'l'uj being positive). Thus Vz‘P_( and V"{’J
both participate in correcting the original imbalance in the central region

at level £. 1In the central region at levels k different from 2, the sum

’ /
(?:¢k“ € V"‘P* ) is zero because Zeh).c_(f vanishes for kg 2.
}
In a similar way, we can derive the relation

£ ¥ ‘A° eL.&4:
(4-4°), = o' [ 2) [V24) > Mi(4y )
7 £ i 9% (4.10)

cwwler

: / Y
and also use this to evaluate Th - 2’,‘ (¢h-¢h~: ) at h =2y, K.

These functions have been computed using the same distribution of

P, T, Ek and ¥} used for Table I, and with sin® = 0.707,

Ay = (RooRw /a ) and ( A% / £% ) = -1, The results for 2 = 7

(250 mbs). are shown in figure 1. Parts (A) and (B) of figure 1 verify



the deductions discussed above. (The prlnted values for & ¢ /f‘
at 4 =4, in part (A) are the averages of the inner :"_and outer
solutions at 4 &4, .) The lateral dispersion of negative Vzé«
at £ = 7 from the inmer to the outer region is clear. As a counterpart
to this, we see that Vz&“/ in the central region at £ = 7 is negative,
and the ofiginal "excess" of Vz‘l’. at 46 <#, > % =17, is dispersed
vertically‘ _‘in this region, since V'Pl is positive at k¥ 7 forme ¥y
The distribution of height change q': ¢'/’, in part (C) of
figure 1 is r}eadily understood from the distribution of Vz¢,.\‘ “Ite
vcorres’ponds to a fall in height cent'éfé& at k = 7, x = 0. This leads:of
course to the temperature decreases shown in part (D) at k 2 9 and
teﬁperature increases at k > SL . (Recall that Th = 'Zh(ﬁ'd’h-—. ),
so that T, = %, (6 -4]) )
The values ef (Gd)l‘)':z = (26 m%sec™2)2, (8T)2 = (0.6 deg)? and
(6v)2 = (2.5 m/sec)? have in this case produced a ratio of geostrophic

vorticity change to vorticity change of

' 366"
M= [ R v"P] ( = 0318
/ 3@5‘ ’ (4.11)
3 at- x =0, k= L=17. In doing so we have minimized the area integral of

Te

k=2

aZ 7 (og) m‘Z ﬁ,&t(q‘a ol Vv ze4n)

-

We can therefore expect f' “to increase if ¥ is increased (8v decreased)

and if (3 and o« ‘are decreased _(ST and 6¢1 increased).
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This dependené”é is complicated. 1In. order to provide some numerical
insight into it, a series of computations have heen made in which the
ratio 6‘¢1/6T‘ is kept fixed at (26/.6) m?sec ¥deg™!, thé uniformity of 8T
and 8v with k is retained, but both sin® and the ratio (S8T/8v) have been

varied. The results can be condensed into an approximate formula:

o 6.L3RET 3.
s (4.12)

Ana siné Snr

(4, has been kept fixed at 200 km in this procedure.) VZQ”' and V"ﬁl
will therefore participate equally in restoring the balance equation at

x =0, p= .25 1in this special case, when

§T(d
(de8) _ 4.48786 sind (4.13)

§v(m sec” 1)
Although determined for a special case, this case of localized imbalance
at p = .25 is realistic enough that (4.12) and (4.13) may be useful in

adjusting the effects of different 4T and Sv.
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5. Effect of a horizontal variation in aﬁaiysis weights

“‘”nctlons ﬁ{ and ﬂ represent the horizontal variation of
(g”l)/.f‘,- and ( ‘T“) /&T* , with a mean value of one. They will
therefore be less than one over "oceanic" regions and greater than one
over the data-rich continents and, to a considerable extent, wiil be
quite similar to one anotherﬁ 1"~ ﬁ' . Using Cartesian coordinates
X,y, Wwe can exaﬁine most simply the effect of this horizontal wvariation
by considering the step function distribution

P 7, : 4 30) | (Region I) 5oy
| fm J (4‘<0) (Region II)

This is introduced into equations (4.1) together with a forcing function

l—:: % siwamy sulpy +¥), (5.2)

41., ‘?E' and Gy are constants. ¥ is a phase angle, and m and p are
positive wave numbers.

The equations in both regions are the same:

,ﬂ,}..— 65 “lx) m&f;, (5.3)
4, = 5'/ W x) am ny,
and
dr ' . (5.4
‘-‘-;; ..M'-) (,«.a.-,g;-) = - M(P#f#)) -4)

-

2 :
—_—_—-mtly -0 =
» # - o
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The internal boundary conditions at x = 0 are continuity in h, s,
,
sh/ox, and D(¥'e) /24 .

These translate into

d,q’ (5. 5a)

&
1

WL,
\rdof
2-& n=te

as & =» © . Also, the solutions must be bounded at infinity:

Line (e, ) = finite, (5.5b)
lyl > 00
The solution for & is simply the particular solution
w = Au(petyl , =P Sa st (5.62)

2 2 .2
Pttt O
since the boundary conditions (5.5a) and (5.5b) rule out the homogeneous

s
solution ex iOnz+ ¢: )x for u. The solution for v is
P J

2 ' +
O -7 - g
ar = -~ Amprtv) + ( - ) e - (5.6b)
(' p')(ﬂ‘fp'to;‘) 1o+ Vgl ™~ 3

with the + sign taken in region IT (x < 0) and the = sign taken in region I

(x> 0). (We consider m > 0.)



. -25~-

The sin(py ++ ) part of u and v is the solution for any completely
!
uniform value of ¥ . The introduction of the discontinuity (5.1) into
1’ and ﬁ’ therefore does not change the geopotential field hj./
But it does change the "streamfunction" field by an amount
' @ Ty
/‘ } G’ 0;. . fn 7: va

L = oo d “‘"‘ & 5.7
(”t"‘?:)["l*P!*aj!) 1n'f{_t ey " ( 7D

~This produces a discontinuity in ’tljle y-~component of ‘velocity across the
1ine x = 0, i.e., a vortex sheet. The discontinuity vanishes when the
pﬁase % equals ¥ W/2 s i;e., when the forcing function sin(P‘p +3 )
has its maximum or minimum at x = 0. The discontinuity in 1" does not
change the vorticiﬁy field awayb from the line x = 0, since Vl.&; = o
. for x 8 0. The strength of this vortei sheet is measured by the diécgntinuity

in meridional velocity

: ¢, N/
. b J 2% k
AV CJ“‘M") = " - ( 5
& evo ¥ L e "" Y G

2
4 hj does not change in this case only because v 4',' =@, TFor more

!
general variations in & s hfl will differ from its value for 3',5 A
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Equation (5.2) is consistent with the following spatial distribution

of VtAo
-

s
\-?.A - . 4
(_-_-_) = Ql MM’,M("#‘?’V}
2
f /] (5.9)
For simplicity we set Q‘l equal to a linear increase from zero @tip = 1

to Qmax at bp = ,25 and a linear decrease from Q at p = .25 to zero

max
again at p = 0. Gj in (5.7) then equals ('F!&/ZJL) ;e{’.f;’j @j,

and (5.8) can be shown to equal

. - 1 »
- 1 e, -8 0
. 2 fao . rr |STe (X D %G
A\i = p ey snmu;. - I\% bt st -
(wt+p®) #r"’flt 1 kR’ g P
A value of (0.25)2 for Q nax fepresents a moderately intense wave system.
, For definiteness we locate x = 0 at the west coast of a continent and,
’ ’ ‘
in agreement with the discussion of % and {’ in section 3, we choose
fr.,: 2 J fﬂ' L= 0;2 - By selecting %/ =@ we position the wave in
i 7 T o
V:A" to correspond to a "cyclonic" region of negative Vﬁ
pig ;
centered one—quarter wavelength off the coast. For the nondimensional

wave numbers p and q, we assign reasonable values of

= 27a

= 4
east—west wavelength

2ma
m = =27
north-south wavelength

corresponding to values of a/2 for the east-west wavelength and a for the

north—south wavelength.
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Values of #8Y for the above parameter values, for siné =9.707, and
the same ;7, i, ; used for Table I, are shown in Table IT (at sinfm y)= 1).
The discontinuity 4Y 1is equal to 2 (1’1.- fa.)/(frrf;)times the continuous
meridional velocity V at x = 0 due to the sin(rf *3) termln ('5.65). It
is therefore not large enough to change the sign of the meridional velocity
from the left side to the right side of the line x = 0 in this example.
This suggests that it will be practical to use horizontal distributions of
1” and {S, in (3.6) or (3.11) which change suddenly--for example in
oceanic areas where an overall level of {3’-4— 1'[4- 0.2 is punctuated by small -
regions of {3'-4. 1"0 & centered on scattered island and ship statioms.
AThe predominant positive sign of AVY in Table IT can be deduced from
equation (3.11) and the results of section 4. In the given area, Vna
is zero at x = 0 and negative to the west (x < 0). For uniforrﬁ 1/, and [5,
we therefore expect a center of positive streamfunction change west of x = 0

and a negative center to the east of x = 0, giving a negative value of

95/9%‘ at x = 0. Referring to equation (3.11b),
v.¢'y S; + Q5o IR =0, (3.11b)

[
we can imagine the introduction of a non-uniform & as resulting in an

approximate equation:

ol . ' ‘
i S VA S; (mew) + V.sww @ ij P id vs leld)
The right side of this equation would be positive at x = 0 for the case

shown in Table IT,
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Table TI. Values of AV at m y = w/2, This is the discontinuity in

meridional velocity produced at a west coast (x = 0) for a

2 . b
realistic forcing function W:A®= £ @1 stw My Sy
o L

The continuous meridional velocity V.at x = 0 1is also

tabulated.
P Q AV (1:51 sec™1) V (m sec”!)
1.00 .. 0.0000 - 0.272 - .166
0.8 0.0125 - ©0.304  0.186
0.70 - 0.0250 0.786 0.480
0.50 0.0417 1.253 0.766
0.40 | 0.0500 - 1.435 0.877
. - : o_.l3o 0.0583 - 1.617 0.988
0.25 0.0625 1.766 1.079
0.20 '~ 0.0500 0.897 0.548
0.15 ‘_0.0375 | 0.181 ' 0.111
0.10  0.0250 ~0.332 - 0.203
0.07 0.0175 - 0.528 - 0.323
0.05 0.0125 - 0.608 - 0.372
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The following argument illustrates the minimization principle acting here.

t . 4
In the figure, let q’ and ¥ min denote the circulation change pattern

max
f r 2 |

for ¥= ﬁ =] . The superposition of (5.7) from non-uniform ¥ acts
7 2 ‘ . .

to reduce (V(P ) over the continental area (where & is large) and

) 4
increase it over the oceanic area {(where & is small).

o .

@)

ocean : continent

‘
small ‘Yl large ¥

6. Iterative solution methods

The problem is to get solutiomns for H., S; and Ry in equations (3.11)

|
in which 1"/ ﬁ’) E are known functions and ?I' is a known positive
constant., In this section we first consider some simple iterative

techniques for the simple Cartesian case of 3":/5 ,: { and siné = constant,
i.e., equations (4.2) Wilt:h "'3‘--(5’ =l . We shall see in this section that
conventional iterétion methods will probably not be satisfactory, even for

this simplified problem. (Stephens also experienced difficulty in this

respect; see-page~'737 ‘véf his 1970 paper in J. Applied Meteor.),
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In order to explore iterative methods most expeditiously, we shall
consider that "'simultaneous relaxation" is performed. That is to say, if
we have an equation

vza’vn » ’6' r 4

for the +| iteration of wariable a given a known value of the r

- . . . { ’ .
iteration of variable b, we obtain @Vf exactly before proceeding to

the next iteration. (It seems reasonable that if conventional point-by-
point relaxation schemes were used on a horizontal grid, they would converge
even slower than this hypothetical simultaneous procedure.) This enables

us to replace the operator v2 by a simple factor, —nz, (n is roughly
equivalent to the spherical harmonic wave number). We.of course now have

to require convergence for all n for each ¢

j-
Equations (4.2) then reduce to
_m'-,é. +at <4 - - 5,
4 . A =0 (6.1)
A-J + 2, "
- 2 . t:]‘.q = 0 .
M /4) t f “ .
The solution is
2 <
> . .
'z'.v' E/(m g ),
(6.2)
L. = - :zf;,/Cn’(A42*€7t);
J Jd J
= o0F faitmte ot
b} ”j J / o J,»__) '
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This solution is of course not accessible to us in solving (4.2), but we

can simplify our algebra here by working instead with the "error"

(R,an)  =(h 4, n) - (h

L. 2.}
T terrov) 42 427 approx EN R J)t"‘"

These lead to the homogeneous error equations

-h+s =0, (6.3a)
s+ r=20, - (6.3b)
- n?r + ¢%h = 0. (6.3c)
Iteration scheme I.
vl v
Jg SR PR v
M 2 - J'/& 3 ; ' (6.43)
v Vil
A
These lead to the convergence process
R o
T omE | (6.4b)
for h, r, and s. Convergence is thereby achieved for short-waves
mt> A s’
i (6.4c)

Since_lj varies from 100 to 32000, this scheme is unsatisfactory by itself.
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By reversing the equations, we obtain

Iteration séheme 1T

vi! v
Vel v (6.5a)
At = 4 N

2 'lﬂ"__ 2wl
FAT = mta

which understandably gives the reverse of (6.4b):

,&vy-ff- 42'&”

o* (6.5b)
This converges for long waves
B >
m® ¢ Bsin'e (6.5¢)
Neither this nor (6.4c) is satisfactory for ali n.
Tteration scheme TIIT
This is a mixture of I and II:
h* = s‘{ n?r% = g2h*, g% = - ¥,
(6.6a)
s¥% = h¥, k% = - gkx  g2h¥k = n2pix,
followed by the combination
L = AT + -0 -
A o gt e (g2, (6.60)

where o and B are numbers between zero and 1,

These produce the iteration
results

oy z v
vt a - My - aa’

o? 2 (6.6¢)
e i

27 s (,.,,La"_;'o;jp/.
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The iteration eigenvalue u for this process satisfies the quadratic

cleoZ e Zp -

with solutions

Ap = cc—.e)N1— 3 +{[a-¢m-r—é]+‘f-e 'l&}

2

(6.6d)
N stands here for n2/02, a quantity which effectiwely varies from almost
zero to a very large nuﬁber. |

For fixed o and B the radicand has a ﬁinimum With.respect to N at

N2 = g/(l-0), this minimum value beiﬁg 40 (1-B). The square root is

therefore real. Since (1-a)N + B/N is positive, the convergence criterion is

, { a8 . 2
z - (l*‘)N'f‘—-—--#J( £ - { <
= z{ W ["‘f’”"’N J+1tp)

for all N, For small N;

. B N(t-8] 2
M = Nt y + O(N7)

For large N,

("’")N + ‘{{l’(’) N-x)
/_u'“ (/-:)/V '0[

The requirement that B be small and that (1—a) be small suggests that we

choose B = 1-a. This gives the simpler condition

A max =‘(1—.()VZ + -/(lf-l)azz-f- e~ A (6.6e)

where
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The large range in m*/ Sh"’a means that Z can be very large, and the
only hope for satisfying (6.6e) is to have d close to 1. However, ﬁmax
equals one for d:lland 9/&,“' /9’( at o=l equals 1-Z, which is less‘than
zero, Therefore Wpax will be greater than one for a slightly less than one.
This scheme will not work.

An only slightly more successful scheme is the following,

ITteration scheme IV

Ve

= (02/n2)h¥

sk = - ry‘ .
rxk = - ¥

h¥ = (nz/cz)r'z/

g%%

h* = (02/02)r¥
followed by . . .
*FK
27 s a® 4 (1¢)e
. ¥
A s anF r A
' This leads to the iteration scheme .

e - {[d_(h{m]a/N ; 2

where N again equals n2/¢?, The convergence criterion is

2
[«itn)-n] < N
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For a fixed d, N must lie between
'N[-()- H-R-L-—Rdz-./[-l-fa -"{al"
f =
Qliw)?

and

1420 242+ Af 142 - d*

N’_ L) =
aAlt-«)?

in order to have convergence. The values of N”and N2 are as follows,

€ being a small quantity:

Ny, N,
R
a) d= e € 1494€ ~ «
b) H&=3% 3-202 + 0,17 3+22 ~ 5.23
c) =x)-@€ -¢e ;L;+_é‘?_-._3+'lé N

. -
N is equal to m'(ﬂf sn’6) ~ 24’/?‘,’

For j = 1 and 12 we have then, with Oen = 1, the following ranges for N:
j=1 .02 | S Nc¢coo
o= 12 .000067 SN Sx

Both j = 1 and j = 12 willkbhave their lower limit N, satisfied only by small

a (o = €) but the upper limit' N, will not be satisfied. This method is
therefore unsatisfactory also..
An iterative method to solve even the simplified system (6.1) does not

seem possible. We therefore turn to a more direct method.
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7. Use of spherical harmonics

We consider now the complete system (3.11), dropping the j subscripts

for simplicity:

I - C©smo VS = - F,
-+'US +V sine VR =0,

VPR + AB'H =0

’ ¢
We first rewrite this to put all variable ¥ and [‘ effects on the right

side:

VH=-siypVs = -F ,

(7.1)
VS + Vs QR = V- (#) VS, -
VIR + AH = A0-8)H.

(7.3)

The iteration process will consist of using the previous iterates Sv and
Hv (initially zero) for the right sides of (7.2) and (7.3), and determining
Hw‘ R Sv“ and Rv“ from the left side of (7.1)-(7.3). [The process for
the special case 7"3 ﬂ'=l explored in section 6 would not be iterative,
and therefore not subject to those convergence problems.]
We use the normalized spherical harmonics to expand these fields, for

example - P"" |
Y, = Foe

H= X HTYT
l’"}ﬁl‘

(7.4)
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vl it Ve
This is done for the three unknowns H ) S J R on the left sides
of (7.1)-(7.3). (Sz and Rz are defined to be zero.) Let us also consider
that the right sides of (7.1)-(7.3) have also been expanded in spherical
harmonics, perhaps by a transform technique, for a given ¥ iteration.
The‘operator V2 on (7.4) produces the well-known result |
e e 3
| IH= - % mime) H Y" .

The operator .stk® VS however becomes

Vesnd NS = snd VS + cos825/08

= £ VS ¢+ (1-4)2S/og

- so that

Qesmd S = Z 5‘:‘ [-m (n+i) g \C‘_ + (1-4)? 7:79»;: ]

(W& have introduced the conventional notation x = siné at this point.)

Using the relat_:ion‘s (8.5.3) , (8.-5.4)_ and (8.14.13) in Abramowitz and Stegun,
we can show that | , ‘
Yﬂ - ™ ' YM

-
- Y iy ? S P
mimi)y 1 + (-4 ¢ ‘'m o M(M*z)a;”” \C,“ ‘m n)am et (7.5)

oy
in which : '
2 ] 2
Qa = a =9,
& Yn2 -1 } - (7.6)

o . .
(Note that a, is not needed, since Sg and Rg are zero.)
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For simplicity let us now consider only a single zonal wave number m

~and temporarily suppress the m superscripts and subscripts. Equations (7.1)-

(7.3) are
N, N » Moee
~ 2 nmoH P+ TS [mzmz) Gy Byt 003, B[ - T EE
M e o |
Nan I.,‘ Ao
- Zm(m-u)S F — Z [41{114-2]@4“ EIH 'f‘/mvl)lt- 7 = 2
P ” . o =
-~ ; ‘ : A
[2 8, meny R, - T ZBF

" where Fn, An’ and Bn denote the expansion coefficients of the right sides

of (7.1)-(7.3). Collecting corresponding coefficients now gives us three

equations for n = m, ml, ...,, Ny-1, Np:

~M{MH)HM + /mz“'}afn 5 +m(4'*‘1)¢dlﬁ ‘Snn =" ’i s (7-73}
M (+1) .5; + (‘zf")a-* R’”ﬂ + mlatra)a,,, Rdm = "A;“’ (7.7b)
A4, ~mlar) R, =~ B, | (7.7¢)

The a, terms in (7.7a) and (7.7b) disappear for n = m. At n = N> the

S and R terms in (7.72) and (7.7b) vanish. (We can simply define
n+1 n+l » »

a"'" = for PORN N" .)  Elimination of H, reduces this to
™
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[mz_‘)%' '?u—: +M(miz)a, -5:", - a'tan)? R,,, /a2 =- 5 + mim)B /A (7.82)
mlﬁlﬂ)é" + ["’z"')am @nq + "'(M-}‘Z’&Ml RM'H = -'A/u (7.8b)

Elimination of Sn is now convenient. If we define

4 - (M*t)(mw)a' - mxi m*-m®
» m e dm*-1 (7.9)

the result is an equation for R !

A F 4 3 2 i
m ‘.’,, (mﬂ)ﬂ',,, ” {m-H)J K j,
'g.;o ) M-z *[ m-1 ¥ iz "+ A - +4"“ a7 MZ

(7.10)
f: au(m+:}ls lﬁ. A 4&h4|
= - 2 — — N + Sy
JE | . | .
(Note that //,"-, vanishes for n = 1 and that b_ vanishes for
rrds n

n =m and for n > Nm). The matrix multiplying the column vector
R, (n=m ml, ..., Np) is symmetrie, with entries only along the
principal diagonal and the upper and lower diagonals twice removed frbm
the main diagonal. (The latter feature reflects the fundamental separation
of Pﬂ into even and odd polynomials.)

Having solved for R, from (7.10), we find S, from (7.8b) and Hn from

¥t L 44

(7.7¢). These are the new iterates . and ) . The right sides
of (7.2) and (7.3) can then be reevaluated with the new H and S, and the
process repeated.

An interesting question is the truncation limits to be assigned to m

énd Nm in the expansions (7.4). These limits should be large enough to
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include the information content in the original forcing field ‘7'£2
but they must also be large enough to properly reflect the "Xl and ‘3,
distribution. Numerical experimentation will undoubtedly be necessary
to resolve this question.

The system of equations (7.10) can be solved directly as follows.
Consider separately the equations for n=m, m+2, m+i; ... and the

independent set n = mt+l, m+3, .... Each set can be written as

4 #, + e 4 =4, (7.11a)

& £t 4243 + & 4 = ’23. (7.11b)
W 4‘;., * dh'ﬂh t 4 %, = 'g‘{. (7.11c)
K2 ”k-z + dK'l 'gk'-i . *+ a—k'l lyk = /4"‘ ~t (7.11d)
G Heq T A ¥y = ’4'!4 (7.11e)

by using an obvious notation. We look for a solution of the form

#, 2-A %, t8, JR TN TN R A
(7.12)
Substituting into the general form (7.1lc) produces the coefficient scheme

for k = 2,..., k~1:

k4

I

Ak (7.132)

¢l£ - ‘Lhﬁavlgﬁirgz 7
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4, - B

l3h. = )
"A Moy T Ak~a (7.13b)

(7.11a) produces the starting values for this scheme:

a, .d-c (7.13¢)
A - ey B -— i .
' 4, ¢ 4,
(7.134d)
Having computed Al’ s s AK—1 and Bl’ cees BK—l fwhich have used all

equations except (7.lle)1, we determine M“ by using (7.12) and (7.1lle),

Ay, ¥uy = -, % *’g’z >

to determine /FK

¥, = .
A (7.14)
A K-

(7.12) then produces successively 4!"" ,4"_2 R e, #2 ) 'ﬂ' P

8. Imitial field of divergence

The previous seven sections have been devoted to determining mutually
balanced fields of a streamfunction and geopotential. We now supplement
this with a quasi-geostrophic determination of an initial field of

divergence. The quasi-geostrophic system to be used is one of the simpler
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versions defined by Lorenz (Tellus, 1960, p. 364), in wﬁich the Coriolis
parametér is fully variable. (The foliowing description is for the
entire globe, but a restriction to the Northern Hemisphere with the
usual symmetry conditions is easily obtained.)
The equations are written in the following nondimensional variébles

and symbols:

p = pressure + (100 cb)

t = time x 20

-V = horizontal gradient x a

¢ = streamfunction * (20a?)

$ = variable geopotential + (4Q2%a2) (8.1)
Z=-4np
W = dz/dt

T = standard atmosphere temperature

§§-= velocity potential * (2Qa?), i.e.
P

>

Viiv = V(3X/3p)

x = sine (latitude)

The equations consist of the vorticity equation,

22 ; W L ~ 2
VR VAR = R oo,

the linear balance equation,

W gr2é
vaat = ¥ o (8.3)
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the simplified first law (combined with the hydrostatic equation),

?_ 2 X o é
2 + SW = Zf__ Rxvp.v® - B (8.4)
”Z ot gn’a - ¢' o7 )
the continuity equation,
2
W= X,
(8.5)
the upper boundary coﬁdition at p = Ptop’
' 2
= 0 =
W=o, VX=o0, (8.6)
and the bottom boundary condition at p = 1:
W = ——%—:,«r = C (8.7)
A2 RT
In (8.4), S is the static stability function
2 - -
Ses)s SN (EE) L dF L
tl.a.za} .1 J}- yo*e* (8.8)

(5 varies from about 0.01 to 0.03.) q is the heating rate per unit mass.
w in (8.7) is the vertical Qelocity (dimensional) at the bottom due to

orography and friction:

A0 (dim) = 2’”‘ [ !; g Vip'vﬁa v D vz(/l] ’ (8.9)

z is the (dimensionai) gfoundjﬁeféht-and D is a length ~n 150 meters,

Equation (8.7) should really have a:ierm

2. 2 ‘
Jas 26 _ 24 .
A7 ot /4 _'391:': ., /a, v 10, (8.10)
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added to the ieft side. This term is negligible, however, except
possibly for the very longest horizontal and vertical wave lengths.

Our goal is to detefmine 3X/9p. We shall assume that the vorticity
advection term A in (8.2), the temperature advection and heating term B
in (8.4), and the vertical velocity term C in (8.7) are known functions,
being determined from the balanced fields of ¢, ¥ and (in the case of w)
from the known orographic height.

The bottom of the atmosphere will be set at the constant value p = 1
(100 cb), since this uniformity is required by the quasi-geostrophic
system. The pressure surfaces on which A and B are most directly computed
are set by the standard pressure surfaces on which ¢ and { were computed
in the variational analysis (p=1, .85, .7, .5, etc.). The.logical
vertical structure of the variables,'however, has both X and W at a series
of pressure levels:running.from p=1to Peops with the other wvariables
3P/at and 94/9t at interleaved values of p§  this arrangement conflicts
with the vorticity advection term being specified at p = 1. We therefore
assume that A and B can be defined by vertical interpolation at a new
convenien%v}set of pressure levels.

The conVéniéﬁﬁ;lé%éié'are defined by K uniform increments (A) in Z =

-~ {n p:
Zy = (=1)A 3 k=1, ..., K+1,
Z; =0,
(8.11)
ZK+14= - %n(ptop) = KA = Ztop
e
K

K here néed not equal the K used in sections 1-7.
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. At the Zk levels, the wvalue of p is Py
Fh..' € =& Ph-'»_ /L‘PJ’-’I >
~a/8 _ (8.12)
Each p, is a uniform fraction r? /of the preceding Py © Prop’ it
should be noted, cannot equal zero in this system. The computational

convenience of this coordinéte syétem is however great enough to accept
this limitation.

| At these levels we define the unknowns Xy aﬁd W and (for k = 2, ..., K)
j:he known t_emperature term Bk and stability Sk)‘ Intermediate levels are
defined at the average values of Z, and carry with them the unknowns

dyp/9t, 3¢/t and the known quantity A. The k subscript, is used as shown

. in this diagram}’
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‘ Kar = Wkes ©°

—— Zgun Kt ,
e (3, B, ) P
— Zi X, Wi 5 By, Sk
s
—_— L "ho—i,wlu-. 7 Bhos 2 Sher ,
PR ('3—%_")“ c-%’)h} AL (8.13)
— %, thWA)B‘,Sh

L 3t (:—g)h—t; C—s)br ? A,“'

—— zhﬂ )(I;-: 2 le-l; Bl;-a ’ SIN

e Zz ngwz:' B&?)S“!'
oo G GD ;A
-———-—Z, X,’W, = C

P at the intermediate levels, for example, at the level corresponding to

(a 'l',at)}. is denoted by R
/ - ‘i(ZArz;m) J—
ha=e = dpn,

(8.14)
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Our first manipulation is to express (8.4) at k = 2, ..., K with
the obvious finite-difference equivalent of 3(3¢/3t)dZ, apply the
operator A V2 to it, and then replace 5¢/5t by dy/dt from (8.3). This
result is (k =2, ..., K):

2 9_1’) ] W = 2

v'znv[w)“(at + 05, YW = AVE, .

k k-t ' (8.152a)
If we define the inverse Laplace operator by 6( , so that (8.5) can be

expressed  as

X=4dW,

(8.15b)
the vorticity equation can beywritten k=1, ..., K)
W, - W,
VZ 2%) — V’¢v'( [ kh'ﬂ h+ PL h] = —AL- (8.15¢)
. L A ka'/z

We now difference this in the wvertical, At the same time we define new

variables, so that a symmetric system will emerge. The new variables are

\VL =',uz vvl J
U

kT 4 {(:’g)h'(’%)h_ll ) N

where vy and u, are functions only of k, and are to be determined for our

convenience. The result can be written (k = 2, vees K)

_ff‘&_. v.,,giﬂ/lll +v‘\{ = ﬂ':'v’g (8.162)
o M, s hs

hh [
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7 . "bh k' +— -!-__V_k'__""}:
VA "W{A B A )’"**f |

k (Ah" Ah-.) . (8.16b)
A convenient choice is

hy L/
ms S e = (k)5 /s

(8.17)
This leads to the two equations (kv= 2, veey K)
' : | Pl .
V-#VUII + V'V‘ = (sh) v 8& , (8.18a)
oy . 9 V,
Y V»vfz[.. e ety K Ve ],
s YS5Skm % SBE.
i, (8.18b)

- (.fé..) : Ah-'q»kw
5‘. | A .

k in these equations rumns from 2 to K. In (8.18b), the term V for

kt+1
k = K vanishes, since Vfol = 0. At the lower limit, the Vk=i term for
k=2 1s :
'<7¢4l§7;( \c
' Ve VLW, | (8.18c)

— = - -
6°ys,s, J
(Note the cancellation of the hitherto undefined number Sl') Since W,

is equal to the known quantity C in (8.7),'We can remove this term to

the right side of (8.18b) when k =
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The bracketed gperator on Vk in (8.18b) is now a symmetric tri-

diagonal matrix Dkz (k,2=2,...,K)

~a, 0 \\
|
e,

(8.19)

:vv___L_..
d%k‘= (Zt.+';:‘)¢rzji 5

It Wiil have K~1 positive eigenv’alueslj and orthonormal eigenvectors

. v
Ekj (k,j=2,...,K).

201), 5,05, S sinh(a/N,

Y The determinant of D is equal]_:?::q} sinh(KA/2) + [A
so. that X does not equal zero. The eigenvectors of D,dbfnot have the large
amplitude variation: with k that is present in the variational matrle 0k

(Table I).  In the special case of uniform Sk (i.e., an isothermal atmosphere),
the eigenvalues of D are 2,,‘ = (2/41519 [kao/a)- m(”{l.")/")])

a . - . K
and the eigenvectors are simply ekj.-. (Z/K) Sm[(k")(.!"‘)”/“] 5 155 /’5\)\

h - a) ‘.’jt ‘J K'
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We expand*thé‘unknowns and the known right sides in these eigen-

vectors as follows:

K .
> e, U
. = A
Jaj k:z J k ?
K
/{}/’: = Z G‘J. Vk I
k=2

(8.20)

/N
P ) P
e“f(s;,) \7%

I[z
ki, a
- EZJ' Va9l C

2*JV3,

o
]

T
M-

H

M

LS
~
0
~

[The special term in dj comes from (8.18c).] We thereby arrive at K-1

pairs of two dimensional equations (j = 1,...,K-1):

ﬂj

z | P - /.
N A 1%; \Y 4“7J('ff = «,

H

vy §7‘f3. + ﬁ?{nﬂ;
(8.21)

-

We solve these using spherical harmonics. Before we do so, we note
that the desired result is the field of (5X/9p)--the nondimensional
velocity potential—-at the levels in diagram (8.13) corresponding to

dw/ot. ﬁéing (8.14); (8.15b), (8.15d) and (8.17, we find, in succession,
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(gh o (:;; })‘()k Y (hu,)zw (h)j%"

VTR
S lsn 5on .

It is therefore somewhat more convenient to expand ZVJ. rather than

vj. We now suppress the j subscript for convenience and expand as follows:
n
A
”
v, m
Z v

"' 2
(8.23)

® («ﬂ) Z(.,,)Y:,

m . s . . .
where Yn are the normalized spherical harmonics. By using relation

(7.5), we 6btairi two equations:
2 2
-— = .
[k s, vimro,, 4] + 2 Can; = o,
mimt) 6, A [MJ:',, Y-t +(‘H)é”%c] “ 4
where bn is given by (7.9), and we have suppressed the m superscript.

These can be collapsed into one equation for v:

2
2
b o, o[ 2 Gt 2]

—————— -

(aeet) + (“ﬂ) | )
v ! A 4
'l’.&"““‘é-“_a M —a— {;4! N R L

) "7 ()

(8.24)
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This can be solved for v, by the method sketched at the end of section 7.
;(\i for use in (8.22) is then obtained by reversing (8.20):

| ;{ ci = :Z: ;rdf'

)2 AJ

:E:’G :E: 4"Q') j( (’?lfj

u-a (8-25)

The dimensional divergent velocity is then given by

B i) = .uzo,[\'?(a*):l

div hon -Jm (8.26)

A final remark concerns the part of Y?ci? that is due to
friction--the 2QD Vzw term in (8.9). The boundary treatment underlying
(8.9) assumes that frictional effects below p = 1 have caused a convergence
pattern in a bbundary‘layer below p = 1. The divergence field given by

(8.26) does not include this boundary field, only the geostrophic response

o
to it above p = 1. Therefore, when v(div) from (8.26) is added to the

initial field of a primitive equation model (i.e., the goal of section 8),
the lowést‘layer~or layers in that model should alsoc have added to them
this implied low-level frictional convergence field. If Ap (cb) denotes
the (1o¢al) thickness ofrthis bottom model layer, the added frictional

divergence in that layer should be

v.:& = ) (PS'FC
: 160 ’
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where w is the same horizontal field as that used in (8.7). The
second factor allows roughly for the loss of the lower level part of

(8.26) in regions where Pggc 1s significantly less than 100 cb.




