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ON MAP PROJECTIONS FOR NUMERICAL WEATHER PREDICTION

by J. P. Gerrity

1. Introduction

Standard meteorclogical texts usually discuss the equations governing the
atmosphere in either spherical coordinates or enia-Brpilane: In the practice of
numerical weather prediction, the equations are usually transformed into the
map coordinates of a conformal map. This note is an attempt to bring together
in one convenient place the definitions of the maps used and to indicate the
Jmethodology by which the transformation of the equations may be carried
through.

It has become evident that the standard polar stereographic map which has
served NWP for so long is no longer an appropriate projection. Attention is
shifting toward global and limited area models, for neither is the usage of
the polar stereographic map optimal.

The sources of material used in this nbte are Godske, Bergeron, Bjerknes
and Bundgaard (1957), and Deétz and Adams (1945).

2. The Lambert Conformal Map

The surface spherical coordinate A, longitude, and ¢, latitude, may be
mapped into the plane polar coordinates, ¥, radial distance, and 8, azimuthal
angle by the transformation
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in which.rO and K are positive, real valued constants and Ao is an arbitrary
zero reference for longitude.

If we take K £ 1, the polei¢ = 7/2 maps into r = 0 and the pole ¢ = - /2
maps into the point at infinity. -The mapping is not "one to one"; since
K < 1, the points in the sector, 2mK < 6 + AO < 27, do not correspond to points
on the sphere.



The mapping is conformal since
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in which a is the radius of the spherical surface.

Since there are two parameters r, and K at our disposal, one may set
two compatible constraints upon the mapping. Typically, one may set the
scale on the map equal to that on the spherical surface at two latitudes,

¢1 and ¢2. One requires
r d8 = a cos¢; dA at ¢ = ¢l 3a
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These equations give
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One may solve these for K and Ty to get,
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The map scale factor, m, at an arbitrary point on the map is defined
as the ratio of distance on the map to distance on the sphere. Measuring
the distances along the parallel of latitude ¢, one finds
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In terms of m as defined in eq. 7 and of the results obtained in egs. 5
and 6, one may rewrite egs. 1 as

r = am($) cosp/K 8a
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In terms of Cartesian coordinates, (x,y), on the plane map:;. one has

X =1 cosb = a m(¢)‘ cos¢ cos[K(A - A )1/K %9a
y = r sin® = a m(¢) cos¢ sin[KQ - AO)J/K 9b
The metriecs, h_ and h,, for the coordinate system x,¥, are calculablé
(cf. Morse and Fishbach, p. 24) from the relationships
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One may prove that
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Evaluation of the partial derivatives in egs. 10 yields
1

2.1 The Quasi-Static Equations in Map Coordinates

The equations of motion in surface spherical coordinates can be written
in the following form, which is compatible with the quasi-static approxi-
mation and the conservation of total energy (Lorenz, 1967, p. 18),
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in which ug = a cos;b}.\ and vy = ad‘n



If we define the map wind components

dx _ 1 »
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then the following relationships hold between (u_, v_) and (u, v), and,
- for that matter, among the components of any "horizontal" vectors in the
two coordinate systems.
u = - v, cos K(A - A) - ug sin K(A = Ay) 15a
v = - vg sin K(A - A,) + ug cos K(A ~ Ay) 15b

. To derifve equations in the map coordinate, eqs., 13 are;multiplied by
appropriate combinations of sin KQ ﬁ“}ol and cos KQ ~7,), and are then
added. The observations that
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are useful in the manipulation necessary to arrive at,
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The individual derivative may be expressed as
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The Eprizontal divergence and the vertical component of the curl of
a vector v with components (u,v) are given by,
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In order to express the Corioclis parametér, f, and the map factor, m,
in terms of the coordinates (x,y) of a point on the map, one may define
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It then follows that
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3. The Polar Stereographic Map

A special case of the lLambert conformal map is one in which the trans-
formation is modified to

r = ro[tanf%

|\>|-e-

)] A 25a
0= A 25b

This is now a one-to-one, conformal mapping, but one has only one parameter
at one's disposal. The scale may be made "true" at one latitude, say bo°

rdd = a cos¢dl at ¢ = ¢,

One gets
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The transformation equations may be rewritten as
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in which the map factor m(¢) has been introduced:.

4. The Mercator Map

Another special case of the Lambert type conformal mapping uses
Cartesian map coordinates

X = KA 28a

¥ =F(9) with y =0 at ¢ =0 28b

To make the map conformal, one must satisfy
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The functional form of F which satisfies this equation and the condition
y=0 at ¢ =0, is
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The parameter K may be chosen to make the map true to scale at a
latitude gbo,
dx = KdA = a cos¢dr at ¢ = ¢o 3la
K = a cos¢, 31lb
Thus the Mercator map, true at ¢ = = ¢,, is given by the transformation
X = a coszb‘ok 32a
;i
y = a cos¢, in tan(E + %—) 32b



The map scale factor

cos¢o
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may be introduced into 32 to get
x = a m($) cos¢ir 340
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5. Bambert Osculating Conic Map

A final, conformal conic map of the Lambert type is one which is true
at just one latitude, ¢,. The transformation equations are
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so conformality is assured. The latitude at which the scale is true,is
the latitude of oscalation, ¢,. To prove this,.we calculate
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and show that this is equal to a cos¢o§A provided that one sets,
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One may use the identity
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and substitute 37 into 35a to get

a cos¢ COS¢O {COS(]S ]Sin(j)o' :r_l_:l-_sj;nq)_oJ.Sinq)o

r = sindJO cosd cosd)o 1 + sind 38

or
Sln¢o
in which
cos¢ )1 - sing, (1 + sing,}sin¢ 40
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That m(¢) is the map scale factor is seen by forming the ratio,

r d@ — = a-’kmf;@os(b Sln¢o dA ramf m(qs) 41

a ‘cosgiiax “d sing s coshdx

6. The Pseudo-Spherical Coordinate Map

The partial differential equations written using surface spherical
coordinates may be replaced by a set of finite difference equations. This
is done in certain models now under development at NMC (Vanderman, 1972)
by the construction of a finite difference gridpoint array with the
property that points are equally spaced in both latitude and longitude.

If this array of points 4s plotted on a plane surface, the Cartesian
coordinates x, y may be defined by means of the transformation

X ai 42a
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Considered as a mapping transformation, eq. 42 is neither conformal
nor equivalent. The scale factor is different in the two directions

m, = 1/cos 43a
= 1 43b
my 3

One may rewrite the eqgs. 42 as

x = am($) cos¢g A 44a
y = a m{(¢) cos¢ ¢ 44b
if m(p) = m,(¢) = 1/cos¢ 45



To evaluate the metrics hx and hy, one has
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The velocity components on the pseudo-map are
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The equations of mo€ion transform into
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Shuman (1970, p. 569) notes that troublesome pair of metric terms
may be coalesced into one, if one introduces the wind functions

U =1 cosd - v sinbd ) 49a
V =u sind + v cosb 49b
in which 6 = sind_ (A - xo} 50

is the azimuthal coordinate of the Lambert Conic Map (cf. sectionsb)
osculating the sphere at $o-wiWLLHhS 497idefineds the equations transform to
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in which we have omitted

pressure gradient terms.

the frictional force, F, which transforms as the




Shuman proposes that egs. 49 be modified at each grid point so that
¢, and A, take on the values at the local grid point. The equations given by
Shuman, as the set below his eq. 20, are correct only for a local region about
the central point where 6 = 0 and U = u and V = v. ‘

It will be noted that the two poles become lines under this pseudo

mapping. The process for treating these singular points may be considered a
form of boundary condition specification.
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