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ON MAP PROJECTIONS FOR NUMERICAL WEATHER PREDICTION

by J. P. Gerrity

1. Introduction

Standard meteorological texts usually discuss the equations governing the
atmosphere in either spherical coordinates or on-a $-plane. In the practice of
numerical weather prediction, the equations are usually transformed into the
map coordinates of a conformal map. This note is an attempt to bring together
in one convenient place the definitions of the maps used and to indicate the
-ethodology by which the transformation of the equations may be carried
through.

It has become evident that the standard polar stereographic map which has
served NWP for so long is no longer an appropriate projection. Attention is
shifting toward global and limited area models,©for neither is the usage of
the polar stereographic map optimal.

The sources of material used in this note are Godske, Bergeron, Bjerknes
and Bundgaard (1957), and Deetz and Adams (1945).

2. The Lambert Conformal Map

The surface spherical coordinate A, longitude, and ~, latitude, may be
mapped into the plane polar coordinates, r, radial distance, and e, azimuthal
angle by the transformation

r = ro Ltan( - ) la

0 Ka %O) lb

in which r0 and K are positive, real valued constants and AO is an arbitrary
zero reference for longitude.

If we take K _ 1, the poled = r/2 maps into r = 0 and the pole 2 = -/2
maps into the point at infinity. -The mapping is not "one to one"; since
K < 1, the points in the sector, 2nK < e + XO < 2r, do not correspond to points

~on the sphere.~~0on the sphere.
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The mapping is conformal since

1 9r = + r e = 0 2a
a cos% a a

r O = -1 ar = rK 2b
a cos4 DX a a4 cos4

in which a is the radius of the spherical surface.

Since there are two parameters ro and K at our disposal, one may set
two compatible constraints upon the mapping. Typically, one may set the
scale on the map equal to that on the spherical surface at two latitudes,

41 and 42 . One requires

r d8 = a cos4,1 dX at = 4 1 3a

r de = a cos4,2 dA at 4 = 4 3b

These equations give

r0 K (tan(T - 2 } I == a cos4, 4a

r K (tan(4 a2 } = :a cos4 2 4b

One may solve these for K and ro0 to get,

rcos4,j ltan- - '1 ]7
K = knf J - £n 5

tan--2-

and
a cos4, -K

r = K tan - 6oK n -

The map scale factor, m, at an arbitrary point on the nap is defined
as the ratio of distance on the map to distance on the sphere. Measuring
the distances along the parallel of latitude 4, one finds

m- de cos4, tanT- -
M W~ = 1YT 1 17a

a cos4d cos4 tanT .

or equivalently,

rcos1 1-K [1 + sin4j K
m() = cos J t1 + sin4 J 7b
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In terms of _m as defined in eq. 7 and of the results obtained in eqs. 5
and 6, one mnay rewrite eqs. 1 as

r = a m(f) cosq/K 8a

o = K(( -A ) 8b

In terms of Cartesian coordinates, (x,y), on the plane map-; one has

x = r cosO = a m(S) cos4 cosIK(A - A0)]/K 9a

y = r sine = a m(~) cosb sinlK(A - A )]/K 9b
0

The metrics, h and hy, for the coordinate system x,y, are calculable
x y

(cf. Morse and Fishbach, p. 24) from the relationships

1 = hx ( 1 a 2 + l0 aI- lOa
2 (ao1 ax a j

1 = hy cos A + (a JJ 10b

One may prove that

- (m (c) cos}Y = - K () 11

Evaluation of the partial derivatives in eqs. 10 yields

1
hx = hy- m() 12

2.1 The Quasi-Static Equations in Map Coordinates

The equations of motion in surface spherical coordinates can be written
in the following form, which is compatible with the quasi-static approxi-
mation and the conservation of total energy (Lorenz, 1967, p. 18),

dus - usvssin~ - fvs + a P = Fx 13a

dt a cos~ a coso a
dvs usU sin~dv5 + fss + fu + a ap = F 13b

dt a cos a a

in which u s = a cos4A and vs = aS
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If we define the map wind components

h dx 1 .u --h ~ x d 14a

dy 1 --v-= h dy. 14by dt= m

then the following relationships hold between (u , v ) and (u, v), and,
for that matter, among the components of any "horizontal" vectors in the
two coordinate systems.

u = - Vs cos K( A - A0) - us sin K(A - A0 ) 15a

v = - VS sin K(A - A0) + us cos K(A - AO) 15b

To derive- equations in the-nap coord'inate-, eqs. 13 areumultiplied by-
appropriate combinations of sin K(9 A 0) and cos K 3-A0o, and are then
added. The observations that

,+_~. us l1 - sin%) Dm am
- \ - ~ -a cos = v- uay 16a

and

1 a nIn m(W) = 1 - sinc 16b
a af a cos$

are useful in the manipulation necessary to arrive at,

du -_ (f + v'D_ - u-m)v+ am.P = Fx 17a
dt Dx ay Dx x

dv + ( m- am mP = Fy bdt ~~V3 17b

The individual derivative may be expressed as

d _ + m()(u + v )+ w+ 18
dt at ax ay az

The horizontal divergence afid the vertical component of the curl of
a vector v with components (u,v) are given by,

V.-V'\:'-` M2(f)(a m- + Vy m)9a

v a u
KVxv = -4 tXm am y 19b
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In order to express the Coriolis parameter, f, and the map factor, m,
in terms of the coordinates x,y) of a point on the map, one may define

R K2 (x2 + y2) 1/K

with
P (cos l) - K (1 + sine ),K

and then prove that

1-R
sinc = l+R

and
cos4 = 2R1-R½2

It then follows that

Rf = 2w(
and

(l+R) K-1
'M= 2 

3. The Polar Stereographic Map

A special case of the Lambert
formation is modified to

conformal map is one in which the trans-

r = ro(tan(,- k2)) 25a

e = 25b

This is now a one-to-one, conformal mapping, but one has only one parameter
at one's disposal. The scale may be made "true" at one latitude, say %o-

rdO = a cosfdX at ~ = to

One gets
costO ,

r-l+sin0 = a cos4 0.+sin4 0

so
r0 = a(l + sino0)

5
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The transformation equations may be rewritten as

1 + sin%0 _r = a cos 1 -i = a m(b)cosq 27a
1 + sin%

e = A 27b

in which the map factor m(+) has been introducedc.

4. The Mercator Map

Another special case of the Lambert type conformal mapping uses
Cartesian map coordinates

-x = KX 28a

= F() with y = O at = 0 28b

To make the map conformal, one must satisfy

1 by = 1 Dx = K 29
a aco4A a cos a cos

The functional form of F which satisfies this equation and the condition
y = 0 at 4 = 0, is

F = K f sect dE = K in tan4 +
0

(tan L'%+ 2rr
F = K in = = K tantan + 2 30

The parameter K may be chosen to make the map true to scale at a
latitude ~0,

dx = KdX = a cosdA at 4 = 0 31a

K = a cos%0 31b

Thus the Mercator map, true at 4 = i 0, is given by the transformation

x = a cos4.0 32a

y = a cosmo in tang' + 3) 32b
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The map scale factor

cos%0
m() = cos-cos%

may be introduced into 32 to get

x = a m(¢) coso.AX

y = a m(¢) cos4 kn tant + 21

33

34a

34b

5. Lambert Osculating Conic Map

A final, conformal conic map of the Lambert type is one which is true
at just one latitude, o0. The transformation equations are

r = ro [tant + o

0 = (sinco) (A - A0)

From the conformality, equations,-,one must- have

r D0 _ -1 Dar

a cos aA a f

But, -1 Dr _ sin4o

a r 8 a coso

and 1 ao - sin% 

a coso>A a cos%

so conform&ity is assured. The latitude at which the scale is true.,is
the latitude of osculation, %0. To prove this, .we calculate

r de = r0 tan4 sinodA

and show that this is equal to a cosod.A provided that one sets,

ro =a tan( - -- 'ctno-

3!

35b

36

37

One may use the identity

2tan - + sin_
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and substitute 37 into 35a to get

a cos COS+O fcos~ }sino' S1 + sin+o sint o
r sin~° cos cosO 1 + sino J 38

or
a cOSt (r = a co m() 39
sin 0

in which

fcoslo 1 - sino l(1 + sinkoJSin 0o

ITO STIoJ .-1 + sin4

That m(¢) is the map scale factor is seen by forming the ratio,

r do _ -arn-osin4 dA 41
a 6cos467X -asin.4 coss 'dA

6. The Pseudo-Spherical Coordinate Map

The partial differential equations written using surface spherical
coordinates may be replaced by a set of finite difference equations. This
is done in certain models now under development at NMC (Vanderman, 1972)
by the construction of a finite difference gridpoint array with the
property that points are equally spaced in both latitude and longitude.
If this array of points is plotted on a plane surface, the Cartesian
coordinates x, y may be defined by means of the transformation

x = aA 42a

y = a4 42b

Considered as a mapping transformation, eq. 42 is neither conformal
nor equivalent. The scale factor is different in the two directions

= l/cos4 43a

my = 1 43b

One may rewrite the eqs. 42 as

x = a m(¢) cosb 2 44a

y = a m(+) cos4 f 44b

if m() -- m=(+) = l/cos4 45
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To evaluate the metrics hx and hy, one has

1 = hxt cost a + (l }2-

1 =h2(' 9y} + {l Y}2
y a a1

hx = cos - 46a
m

hy = 1 46b

The velocity components on the pseudo-map are

dx
u = hax t = a cos4A -us 47a

v= hdy a - s 47b
Y dt

The equations of modi6n transform into

au + u Du_ D u vU DM + fv + m _P F 48a
D- ax ay az a y Dx 

v + m u v + vav ,W av + uv(um M + f) + a p = F 48b
a~- t Dx va 3 +. aDy ay Y

Shuman (1970, p. 569) notes that troublesome pair of metric terms
may be coalesced into one, if one introduces the wind functions

U = u cose - v sine 49a

V = u sinO + v cosO 49b

in which 0 = sin4o (A - Xo] 50

is the azimuthal coordinate of the Lambert Conic Map (cf. sections5)
osculating the sphere at %0.wiWitlt9 49fidefineda the equations transform to

+m u a + v au + w au - V f + a cose m ap a sinO P = 50aTt-u + 7 .mY D .By+wa- i0 ~.Dt iax Dy >Dz ax 

a V + m u av + v av v f + asin m P + a cos P = 0 50b
at ax Dy Dz x+ U ay

in which we have omitted the frictional force, F, which transforms as the
pressure gradient terms.
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Shuman proposes that eqs. 49 be modified at each grid point so that

~0 and A0 take on the values at the local grid point. The equations given by
Shuman, as the set below his eq. 20, are correct only for a local region about
the central point where 0 0 and U = u and V = v.

It will be noted that the two poles become lines under this pseudo
mapping. The process for treating these singular points may be considered a
form of boundary condition specification.
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