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FURTHER PROPERTIES OF THE METHOD OF TIME AVERAGING
AS APPLIED TO WAVE TYPE AND DAMPING TYPE EQUATIONS

Introduction

In a previous office note [1], the properties of the "time averaging"
method were explored by a numerical experiment. It has since been found
possible to perform a closed form stability analysis. The present note is
intended to document the results obtained.

If the scheme is indicated schematically by

un+l = n-1un+l unl + 2At F(u,u*) (la)

un = u+ ( + (u-)(u - + 1) (lb)

The results obtained fall into two classes.

First, if F(u,u*) is taken to represent a tendency of the wave type

F(u,u*) = iwu iwu* (2)

as in the previous office note, then we find the linear stability criterion:

At < 12a (3)

Secondly, if F(u,u*) is taken to represent a tendency of the damping
type,

F(u,u*) = yu -yun-l (4)

then we find the stability criterion,

1
At < 2y (5)

under the constraint on a,

0. <
a < 1.0 (6)

The remainder of this note presents the necessary analysis.
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1. General Remarks

For a first order partial differential equation of the type used in
numerical weather prediction,

Du= F(u)
Dt

(7)

it has been proposed to use a modification of the leapfrog scheme, called the
"time-averaging method."

We shall consider separately two types of equation 7, a wave type and a
damping type. The wave type has the form,

auU= iWuat

whereas the damping type has the form

aU = -Yu.
at

In both cases, the parameters (a and y) are considered
numbers.

. 2. The Wave Type

The time averaging approximation to equation 7a;

un+l = un-i + 2At' iunu,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(7b)

to be positive, real

has the form,

(8a)

un = au* + (1-a)½(un- l + un+)

Provided that

[a + (l-a)iWAt] # 0

which is generally satisfied, one may manipulate (8a) and (8b)
expression

un+ l - 2[12a + iwAtJun - [a- iAtl-a)]unl = 0

From the form (10), it is readily seen that the method will be
only if the roots of the quadratic,

(8b)

(9)

to obtain the

linearly

2 _ 2B~ - C = 0

are both less than unity in magnitude.
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(10)

stable

(11)

(7a)



One has

1-a
B = 2 + iwAt (11a)

C = a - iwAt (1-a) (lib)

The roots of (11) are,

[-a + i3At]±[t - (cAt)2] (12)

Provided that

BAt < l+a (13)
2

then one may derive without approximation,

I~~~a2 ~ ,1+~ aIk2 1--a2 '1 (14)~+ 12 _ 2 (l-a) £- - (mAt) 2 ]2 2 -

The only problem occurs with C

'' :

W2 = + (l-a) [I 2- (mAt)2] 22 2 (15)

Since, l>(1-a) > 0, we may use an upper bound on the right hand side second
term by letting wAt X 0, one then gets

1+a2 (1-a)(l+a) 
IC+l2 < 2 + 2= 1 (16)

The conclusion is that the method is stable for wave type equations provided
that

1+a
WAt < (17)
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3. The Damping Type

We next consider the method applied to the damping problem (cf. eq. 4).
The scheme has the form

un+l = un - 1 + 2At(-y)un - 1 = (1-2yAt)un - 1 (18a)

un = au* + (1-a)½[un- l + un l] (18b)
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These equations may be manipulated to the form,

(ol-) (1-yAt)un
un + l - 2 [ 2 jun ] - a(1-2yAt)un - 1 = 0 (19)

Stability of the scheme again requires that the roots of the quadratic formed
from (19) have magnitude less than unity.

TMe roots are

(l-a) (1-yAt) + [(l-c)2(_-YAt)]2 + a(l_2YAt))½
2 2

If we assume that

0 < 2YAt < 1

(20)

(20)

then we may write

T+J = I (-a- (1-YAt)
l- l (l-2)( l 2 1 I + ('+K2) I

with

K2 = 4a(1-2YAt)
K -(1-al-y At)2

(22)

(23)

The only difficulty will be associated with C+.
assuming that

However, given (20) and

0 ~ a c 1. (24)

one may readily show that %+! < 1.

We conclude that for damping type systems, the method will be stable
provided that

At < 1
2y

(25)
0. < a • 1.
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4. Concluding Remarks

Additional analysis of the time averaging method is called for. It is
desirable to clarify the method's treatment of the "computational mode" and
damping as a function of frequency in wave-type equations.

The problems associated with mixed types of equations (in which wave
and damped forms appear together) call for careful treatment. The "splitting
method" of Marchuk offers a possible solution but numerical experimentation
may be necessary.
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