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1. - Introduction . - -

In a previous Office Note (#45), an analysis was presented of

“the linear computational stability criteria for explicit and

implicit integration schemes using a two-layer model in Phillips' o-
coordinate system. The purpose of the present note is to perform a
similar analysis for the case in which the vertical coordinate is
based on Shuman's definition of o, In this case, the two. layers

are separated by a material surface, so that & vanishes identically.

’

2, The Linear Equations

The system of equations governing the isentropic flow of an
ideal, inviscid gas is linearized about a barotropic' state of mo-
motion. The Earth's:v¥otation, sphericity and topography are neglected.
Slab-symmetry and infinite horizontal extent are assumed. The linea
equations in a generalized vertical coordinate are D
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' The symbols are standard; the overbar represents basic state values,

and the unbarred variables are perturbation quantities.‘ The sub-

"3cripts denote differentiation with respect to the indicated inde-
- pendent variable, with the exception of the specific heat at constant

pressure, CP .



3. ‘The'VertiCal
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the definition of the vertical coordinate:
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The equatlons for each layer may mnow be wrltten, noting that
vanishes 1dent1cally everywhere. :
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4, The Finite Difference Eqﬁatioﬁé*

v 'We mnext introduce explicit and 1mp11c1t 1ntegrat10n schemes., It
should be noted that the so-called ‘modified implicit' scheme of Office
Note #45 collapses to the ummodified implicit scheme here, since &
vanishes everywhere. The dlfference equatlons are, for the exp11c1t
scheme, :
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Equations 1.3 «vSI.S'ate7the same as E1.3 - EI.,5.
..ug&ﬂh.unf;

o Y (e n&i‘“ L(d n;ﬂ‘, L -"ﬁﬁl j n-1
gpe T A EOTT  a () + G,

— o p — ¢ yn-1
fr 4 ..?ZCPT')"Q;‘ R AT IC Iy

i

0

pn;l;l_‘: n—l O : ) ' - -
ST T UL T eyt L S e, yn-l
e Tr 5 pT(uz)x + % pT(QZ)X

I
o

Equations $2:3 —.SZ.S'aréﬁthevsame as E2.3 - E2.5.

5. -.The Characteristic Equation

We now assume solutions of the form.

 an= q Cn.:elkx‘

and substituté this for all dependent variables. This results in
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Egns. (Zl;BOllcan béwreduced_to;twéyequétions in P and p,, by succeésiVe.
substitutions. - First, T and T, are eliminated using th& pairs (23, 25)

and (28, 30); this yielés‘;
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Then = ¢y and o, may be eliminatedﬁﬁetween thevpairsv(24,32a) and (29,32b):
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" Next, u1 and 'uz“ may Bg elimiﬁated between the%péirs'(Zl,ZZ) and (26,27) :
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One may then replaee ¢ and ¢ as they appear in (34) from (33).
After manipulation, this yields . ; o

e[l ﬁ BZESRTi[Z + e(K—i)J)P - (2 BZe Rfi[l + é(k;i)])pT =0 (353)
(2 8%r RT,[1 + €(Kfl)iJP‘f [;‘_ABZRT5[1»+ kK + 4af(g—1)]jpT =0 (35b)
where r = E'/E; | The deterﬁlnaﬁt of (35) must vanish, ‘Whlch leads to-
the frequency equatlon, v - ‘
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We next. : 1ntfoduce a.change of vaflables, 2 = (SCDZ, where
=y RT, with'y = ¢ /Cv' Eqn. _(36) beeqmesva quadratic‘in'z;
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and .
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Here T is the mean temperature of the fluid; i.e., T = I/Z(Tl + Eé);

6. ThevIsothermal Atmoephere

We now seek to'determine the stability criterion and the free'
modes allowed in this model for a particular basic state. It will be
-assumed that the basic state is 1sothermal at temperature T, and that
the material surface is at 500 mb:

T, =T, =T = 250K

% = 1000 mb
Pp= 500 mb
K =

2/7



‘ From these values, we may calculate

e =2/3
and !;

r = 1/3.

The coefficients #za and b  of (37a) may then be’calculated,ﬁand'the
. roots 2. - of (37a) obtained. Proceeding as in Office Note #45, we

may use “the #; to investigate the stability criterion for the two
integration schemes. From the definition of g for the explicit
case, we have " v

, 4(kat)? g2

- mpt - o8
. . cz . . S o
We define the ratio - 28 the critical phase speed for stability
2
c, =4 g (39)
J .
J

“so that (38) becomes T 7

£?2- 1 = 2i(2 kAt cj)?; (40)
We may solve (40) for ¢ to obtain
¢ = % i(kAt cy)*[1 - (kat cj)Z]l/2 ! (41)

so that if (kAt cj) <1, |z| <1, and the explicit method will be
neutral. E _ :

For the implicit case,'"

- a2 ELge 8 oo | (42)

which yields the quadratics -
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In_both cases il;zl =1, so -that |;| = 1. The implicit is therefore

; unconditionallyineutral.

' Flnally, we may calculate the cr1t1cal phase speeds ¢, from
(41) and the roots Ej of (37a); - J

2, = 1.06 o ) (45)

2, =5.96 . (46)

‘The»critieal'bhese speeds are

ey = 308.0 m sec™! o BRG)

C

¢, =130.1m sech | T (48)

From Office Note #45, the corresponding values for the case of the

Phillips' c-coordlnate are
c; = 307.5m Sec_;* : c , (49)
cy = 83.3 m sec l% - - (50)

-“The:fuhdamental mode, represented by c,, is thus seen to be
insensitive to the presence or absence of a material surface separating

b-'theﬂupper‘and lower layers of the fluid. 'However, the phase speed of

the secondary mode in the present case exceeds that of the corresponding
mode in ‘the Phillips' coordinate case by nearly 50 m sec '. The inters-
pretation of this behavior is not completely clear, but it appears that
the secondary mode in the present case, where & wvanishes at the inter-
face, is closely akin to a free-surface mode, whereas in the case of

the Phillips' o-coordinate,:the secondary mode is clearly of an internal

type..

CE Subsequent to the publlcatlon of Office Note #45, an arithmetical
error was discovered in the evaluation of the roots g,. The root =

(eqn. 32, p.6) should be 2.96 rather than 3.9. The co%ff1c1ent of
v RT) in eqn. 39, p.7, then becomes 0.068 rather than 0.05.



