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1. Introduction

It is well-known that the computational stability of explicit
schemes for numerical integration of the quasi-static equations is
dependent upon the satisfaction of a criterion of the form, -

wAt < 1 (1)

The parameter, w, represents the frequency of oscillation of a wave

motion admitted by the difference equations. It is seen that (1)

requires the use of a smaller time step when a high frequency oscil-
lation 1s admltted by the system of equations.

In connection Wlth our work on the development of semi-implicit
integration methods (1), the need arose for a good estimate of the
frequencies admitted by multi-level quasi-static models. In particular,
we were led to enquire into p0831ble differences in the modes when
alternate formulatlons of the vertlcal coordlnate were employed

In this paper, we shall present the results of analyses of the
free modes admitted in one, two and: four layer models based upon the
o-coordinate-systems introduced by Phillips (2), and Shuman and
Hovermale (3).  The perturbatlon equations will be developed using an
unspecified o-type coordinate.  The specialization to specific co- _
~ordinates and vertical resolution will then be made, and the analysis
indicated. In the concluding sectlon, the results will be summarlzed
and thelr s1gn1f1cance evaluated

2. The Linear Equations in o-Coordinates

The equations presented by Shuman and Hovermale (3) pose the
physical laws which govern the quasi-static atmosphere. The vertical
coordinate, o, may berchosen as‘any'31ngle—valued monotonic function
of :the vertical geometric coordinate. The definitions of o adopted
by Shuman and Hovermale are quite elaborate and were apparently
Wde31gned to allocate the vertical resolutlon of their numerlcal model
in a controlled fashion.

In this section, we shall develop a greatly simplified set of
‘equations from those presented in (3). These simplified equations will
be specialized by deflnltlon of o “and will then be studied in sub-
sequent sections. ‘ R o .

At the outset, we assume that the Earth is an infinite, flat
plane which is not rotating. One may therefore set the map factor to a
constant, unlty, and omit the Coriolis terms in Shuman and Hovermale's



equations. We then assume that the atmosphere is free from extraneous
heat sources, is dry and inviscid. The equatione'then become
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with the thermodynamic relationships and definitions,

» R/c '

.
. po = RT “ L l o . o (8)

For our purpose, . the thermodynamic parameters used in (2), (3) and (5)
are inconvenient. .One may show that '

CPSVﬂ = aVp o o '::‘v ‘ ’ , (9
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iWe pfoceed now to define a basic'state'which is barotropic and
involves no wind. Letting the. ba51c state varlables be denoted by a
superscrlpt bar, we ~f£ind ‘

_ .
o pa = RT (14)
V& = VT =;.v_"= ¥ = 0
R =-a 2

'Will be sufficient to in$ure that the basic staté/iS_Stéady.

We now define a”perturbatlon field in each dependent variable
and assume that it does not vary in.the y direction. For ease of
notatlon, the customary prime on the- perturbatlons will be omitted;

. all parameters without overbars will be understood to be perturbations.
So, replacing the varlables with ‘the sum of a b351c state and a’ pertur—
batlon, the equatlons become

'%¥fﬁ+£' 'fﬁ‘ s
‘%'-F_oc §§—+ § gg ‘,_ 0‘ S (16)
of-sees@IBe0
Po + po = RT | - KBRS | (19)

N This set of linear equations in six dependent variables is not
closed.. It remains for one to define the vertical coordinate, at least

implicitly, in terms of Z. ‘A subtle point in the linearization involves -

the question of the existence of a perturbation in the o-variable itself.
" We have followed the view that no such perturbation is admissible. Once
a coordinate has been selected, it is immutable from the observer's view-
point. Thus, if pressure is selected as the vertical coordinate, one

cannot ."observe" a pressure perturbation. On the contrary, one observes



perturbations in geopotential. In the "inertial" frame, in which a
geometric altitude coerdinate is- used, the observation in the pressure

- coordinate is seen to be dlstorted - An analogy ‘to the Coriolis acceler—

ation is obvious. : :

With this point streésed we may proceéd'to specialize the linear
equations to various o-systems, and to 1nvest1gate the. . free modes admltted
by the equations.

In the case of Phillips definition of o,

o=p/p¥=p/p¥ 0LpSpt L (20)

with p* the'pressure on the ground, the system of equations becomes,

443 0-—2 _9,=.0 » e | v (215
se+T PRt apt =0 o . (22)
T T T-A S -
5t P* T p* (g +-ac}"f o . | (23)
AT _ = 8p* .o R o
ot *° Bt_+»9p ol O : } o (24)
?,—_ o "Cp p S | g | o (26)

*:Shuman and Hovermale use a number of definitions for ¢ within
different portions of the atmosphere. We shall here consider only a
two—domain case; thus, ¢ is defined by ‘ ' :

o, =p/pt =p/pT , 0% p < pT | ' (27)

and

Q
]

r = @D/ Gpx-pT) -

G- pT)/(p*—pT), pl = p < p* - - o (28)

 One may 1mag1ne (27) to prescribe the vertlcal coordinate -above the
tropopause and (28) to define o within the troposphere. It is clear that
the equations will ‘have the same form as the Phllllps system above the
tropopause, prov1ded that pT replaces p* and GT replaces o. The system



. _ generated by use of (28) is, . ,

2w Dok Ty m BT, 2B _

R B b I S (29)
'_?i).{_a'(P*._pT}_}.‘a (_-*._ _T) —-FO (30')
30 C LA S

3 v.‘i‘"—‘—“auvaé’ E o

o (% 2) + e T o) =0 | (31)

BT:» - ) -

°p 3¢ = OT @ 3¢ (p%-5T) - @ _,P + ¢ 0 T =0 - (32)
dT[;;; pT) a + pT a'+_aT(p*— pT} Ei+ pl @ = RT (33)
T =0T o (pe-pT)o . S Y5
T 80 ¢ : ' -

P

Finally, we shall be seeking the free mbdes admitted by the
~ system of linear equations. In other words, we shall try to find the
values of ¢ for which solutlons of the form

4(6,7,0,0) = q(o) elk(XfCt) : = 35

. © will satisfy the equations.  Rather than develop differential equations
for q(o), the equations will be discretized by use of finite difference
approximations: of the vertical dependence. 1In this way, one develops a
set of simultaneous, linear, algebraic equations with ¢ as a parameter.
The requirement that (35) be non-trivial imposes the condition that the
determinant of the system of equations vanish.  The determinant will
yield a polymonial in ¢ with the basic state variables entering as

coefficients. The roots of the polymonial (the allowable modes) will be
determined by spe01fy1ng the basic state.

3. o The‘One—Layer Phillips System
K The equations (20) through (26) may be expréssed upon 1ntroducf10n
'of (35) as, ; S
N =p/p* =p/p¥ 0 psp¥ - (36)
cvu’+ a o p¥ + ¢‘= 0 | | _(37?
2 4 E}P_* +apF=0 ‘(38)
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c p* +-;;h{u + %E‘w}'=.0 . B9
,Cﬁ c.T - c oo pk+ e, u T=0 ' | . f(4p)
o p*a+ o pka = RT . - | (41)

T o )

in which w=@1dk)rS , ‘ (43)

The discretization of this system for a one layer model is indicated
in the diagram below, ' TR

g=0 d=0 o p=0 ¢ = ¢;

o=t _up, @y, Ty P; = % P¥.

B oo 3 p=p*  ¢= >

8¢ the equati§né beéome; L
cup + .58, p* fﬁ-5;¢ifé 0o .f‘  .” ' 2 ; (44)
c p* +F (u; +0) =0 o L (46)

cP c T, - c:&l.S p*‘+,of%f0, f ";, - D

Rl
i
1]

STF a4 5 ph T

We may now eliminate T énd dl Byjuse.of €45), (47 andv(48) to get
+ ¢ =y kpr o | 49

with 'k = R/c_..
ith - - _/CP



‘Then ¢1 and ul.may he'eliminated:hetween (44), (46) and (49) to get

(o2 —-(1<’+1)RT1}p* o 60
in whlch we have used ‘

. : . N
Thus, the free modes for the one-layer Phillips model are

c ((K + 1) RT } . (52).
1f E- = 250 K, one finds |

= % 302 m sec ! .

4, One—Layer Shumén‘System :

It is clear that the Shuman system for defining o is not
appropriate for use'in a one~layer model. Tt is of interest, however,
to examine the result of bounding the atmosphere at a pressure other
than zero. ' We shall, therefore, con81der the system of equations which
result from’ the assumptions

pL

constant
. _ (53)

The diagram below indicates the vertical dlscretlzatlon used in eqs (28)v.
through (34), using (53) and (35), ’

op =0 G =° ¢=¢  p=pL, pl=0=p




in which

" The equations reduce to, .

ooy + ,$‘Ei-p* + ,5'¢1 =0 | : - k o (54)
rmwee Gemee o
cprt GaFDlm +0I=0 (56
¢P c-Tl‘— 5T cp* =0 | L o B | t: >">(57)

.5(p%- pT) oy + pT a; + .5 p* & = R, ' o (58)

- One may eliminate yai 'and Ty among‘equations,(55),7(57) and (58) to

obtain

- a-0 )T RRERED

e = (p%- pT}/(p%+ pT} T o (60)

Then u; and _¢lk may be eliminated between (54), (56) an&i(59), yielding:

(- @ FD) 5 [1- .5 -01)p* =0 .
ox (2 - 2 e BT, [1- .5(1-«)el)p* =0 o (1)

The roots of (61) are,.

RE

e=2(eRT [2-e+ex]) , o (62)
if pf =0, thene =1 -andvequétion‘(62)ire&ﬁcés to the result obtained
in the Phillips one-layer model.. Some interesting choices of ‘e yield
the following results with «k = .287, L S .

/3 )

(¢
.
i+

(RT

. L
r .5;37} ~2 , &

¢ =*i1(RTQ,.952}% , €= 2/

n
Il
I+

'_(Rfi‘l.287)%,i“sl—
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‘ _ 5. Phillips System TW\O\-La.yer Model - ‘

The di_.ag-‘]_fam below indicates. the yertiéal' discretization to be used:

u, a., T : ‘

1‘&;’-‘-’-‘-.72.’._‘..21_’_.2'_____

g.= .5 : ‘"‘ _G . $;0 p= p*/2
:___911,Q11,21;___~

!

We find it convemient to define,

r = pH/pF LT T (64)

. A and i o 6/ik ‘ - ' : ; . (65)
S -. The system of equations may then be written, -

¢ u, + .5 d)l + R’lll r =0 .' : (66)

ccou, + .5 '(¢2+ ¢l) + RTzr =0 o ‘ - : , (67)

il
o

‘(68)
(69)

2 ¢cr+ (ul .+.¥u2. »)

.75 P¥ o

;= 1.5 ¢, = RIx L | o)

.25 p* a

, = ’57‘,(7‘1’2*7‘1’1)"‘ KT, x el (71)

cRT, = cx El;r - .5RTw S (72)

cRT

2 CK'RTZI?'-—..SRI'w ; , L (73)

RT) = .75 P¥ a; + R_fin T ' : o (74)



RT, = .25 % o, + RI,r I )

Elimination of ali %, and T , T :among equations (70) through
(75), yields RO L ng g ! ’

]

L5 c¢; =cxk Rfif‘— R[ .5 R | (76)

S5¢ [¢2 ¢l]b=.¢‘K RTZr - Rl .5 w E . ; (7?)
We have assumed that ¢ = 0 is not a,robt.

One may also ellmlnate u and u, among equatlons (66) through '

(69), to get 1
[2¢2- (& + KD x-¢ =.5¢,=0 (78
[R’I‘l - RTz] r+ 4 cw-=".5 ¢2»% 0 n o (79)

If one next works out the determinant of the coefficients of
equations (76) through (79) and sets it equal to zero, one finds that c
must satisfy the equatlon,

6t - [_3_(_K*+_ 1)(RT, + RT,) - RT] c?
- RT [%(1 + ) (RT, - RT,) + RT,] =0 4 (80)
If T = 0, two of the roots of €80) are found toﬁbevzero, the
other two are similar to those for the one-layer model but with

T .(—T_1‘+E2; e

Foy;éﬁ'isothermal basic state,

=« (RT, KT, 4
R[ = - & (= -+ 222}
: -2 [.75_,; .25 }
B T o (81)
“and

10



~

‘ . -Substi,tutibﬁ of (81) and (_8'2.)A:Lnkto (80), gives the isothermal relation,
ek« TG+ 1) + 78] RT c2 + 75 ®RD2 = 0 (83)

If one uses. K - 2/7, (8’3)“becomes
' 178 ‘ R
ct - (13 ) RT c? + (126}(RT)2 I D)

with the roots

2]
1
[

331.68 — 2
( 252 BRI )y*

]
I+

. — 1
[1.31 RrRT]™
L B (85)
. " ,
24,32 = ) -

SR
c, = & ('-2'52— [.09 'R-f]z

|
s

- The larger of these roots is slightly greater than that obtained
- in the one-layer model. The smaller root is the internal mode.; - For
T = 250°K one gets :

'cl =t 306{::{':‘_111 sec”!
' : - I c, = iSl m sec 1
6. The' Shuman I‘Wo—l.ajrer System

The dlagram below 1nd1cates the vertical dlscretlzatlon approprlate
to the two— layer model u31ng Shuman S system, - :

o, =0 G = ‘O, -if'qs"‘ 4, p =0
"s =5t °‘9 3 p v'=,“.5 pT
o, =1 op=0. _° -0 4~ 41 p. = pf
&i =5 Stk p=.5 (p* + pT)
9=l _é =:o $=0 R

4" l l‘ | : F‘, s 5 11v"



The system of equations may be writtem™

(86)

coupk 5W) T SR T = 0

e u, + .50+ 7¢2)j + 8, .5pl = 0 (87)
e (p*-pT) + (p* pDu, -0 ». B - (88)
‘c,pT+p_T hzj%d* o | 89
ST R D) ey G -0 i (90)
- (9, ¢)+a T+u2pT =o ’ (91)
CP>T1 - a; .5 (p*- PT‘)‘ =0 | S (92)
CP:TZ»_ aé .5 pT _=;0 ;’ ‘ IR (93)
5% BT oy + .5(% pT) T, = KT, (94)
.5 T o, + .5pT T, =R, | (95)

One may eliminate a5 O Tl and Tzl among equations (90) through (95),

2’
and . ¢, = ¢, +x &é pL ' . v 97)
with | o S ;__ : . ‘
e = (p*- TJT)/(p*+'pT)' : | (98)

One may also eliminate - ul and u, ‘among equations (86) through

(89) to obtaln, ‘
2 (pt- pT) - (FF- ‘T) a1 5% pT) - L5GF-p) ¢y = 0 (99)
and

(e? - 5T, ;‘T)_pi = .5pT ¢; - .5pT ¢, =0 - (100)

~Finally, ¢;. and ¢, may be eliminated by use of (96) and (97) in

(99) and (100), to get

(c?2 - ¢ RT; [2 + e(x "-'_1)]}13*’—_ [cZ + eZR_:l_(g - DI1pt =0 (@o1)

12



and | |
de? - RT, Il +% u2r{l—e(£—\1)}l}pT
“ax R IL + e(c = 1)Ip* = 0 | i (102)
‘in which. 7 | s | |
rza /a, = (T/T)( pTp* pD)) S @o3)

The determinant of the coeff1c1ents of equatlons (101) and
(102) must vanish, giving rise therefore to a fourth degree polynomial

cdn e,

If the basic state is specified to be 1vothermal (T = 250°K) and
- the pressures are chosen so that

_—TV=P*"P ]
then one obtains

e=1=1/3.

fThe’rootsoofkthej ¢ polynomial are then

(@]
o
1+

30>8'11'1"sec_l

130 m sec 1

9]
I
I+

It will be noted ‘that the larger of these roots are. sens1bly the.
" same as those-obtained for the Phillips two-layer system. The smaller
roots of the Shuman system are considerably larger than those 1nternal
mode values obtained with the Phllllps system.’



@ 7. The Four-Layer Phillips System

The vertical discretization used in this case is shown in the
diagram below ’ '

o=0 __ _&=0 by» P =0

w
3

s ®5, p = .257p*

23 ¢,, p = .50 p*

Q
It
~I
w
Qe
=
w
o
I

. ) R * .
1 ER A ,

@ o 9=1.00 90 0 $=0,p=p*

o

The systemfpf equations'may-be‘Writtené

+.5¢,+T p, = 0

CU.l'

cu, TS50 50, HT P

I
o

(104)

It
[ ]

c.uf3 + ;5v¢ ‘+..5 ¢3T+ u3 )

2 3

I
o .

cu + .54+ . +% p =
¢y ;¢3-j_ >0, TP,

14



- & §1 * 0y p* + 0y pF = 0

b
a

40, ~ 6.3 + T, p* + o, PF =
. Doty BT
102 2 (105)

o
o

4o, = 8,) + o ¥ o PF

1]
(=)

Ch(e - + T *‘+' D
@ =0+, P+, pr-

~> c .p-* + p*.'[ui - 4(1 k)_l 6>1J‘ =0

no 4
o

CeopH ‘-1%1?5,,[112_-1‘L 41 k)y‘li"/;gc-,?v;;‘jc-,")] |
IR S : A (106)
c p¥ +:P*,[ué + 4(ik)TL (& __"‘53)] =0 .

c p* + ¥ [u‘)_‘,F + 4(d k)_,;“és]“ =0

R - - + E g ':-l . — . 3 _ e

cec T c ul Pl f cP(l k)_; .51, 6.1 0
G . -1 SR e . u

cc¢'T ,q o, P, +,CP(1 k) ‘[,5 I, o, + .5Ts30,] =0

ce T -=¢ &g p3 + cp(i k)—1‘[.5‘P G +-.5T g 1=0

= S N : N S
g c T c ozq,pL+ + cP(1.k) L7$ T 03J =0

k!
[
=]
=
+
ko)
—
|
]
&

=l
N
o
N
+
g
2|
]
£
H

(108)

o
Q
+
oo
|
ns
e
i

o
e
+

o

Py
Q|
t
=}
&

- (109)
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"f;; = 4 Cf - T ) - (u + @ ; */(2 ¢ ).
Ty =t @ =Ty - Gyt u2> @ ) o
E?%;f= 4 (T3 - T, ) - (aq + u3) p*/(Z c )

rhe set of equatlons Just enumerated may be reduced to a set of four,
homogeneous’ equations in the four geopotentials. . For a unique, non-
trivial solution to ex1st we are led to require the satisfaction of-
a "frequency equatlon in -c. The zeros of the frequency equation
yield the free mede’ phase speeds, ‘c. Eight values of ¢ were calcu-

lated numerlcally for an: 1sothermal basic state with a mean temperature
of 250° K.

The results were,

[g]
o
4

‘i 308 m sec”!
c, = ia llQ m sec. *
cy = % 43 m sec !
c, = 24 m_sec_;

, It will be noted that ‘the fastest phase speed-’ is essentlally the
same as that calculated using the one- and two-layer models based on
“Phillips o-system. The second mode, : ¢y, 1is larger than that obtained -
with the two-layer model. . ~This difference is- attrlbutable to the
_variation in static stablllty resolution.

- 16




8.. TheAShuman<System Four«Layer,Model

: TEE‘VEIthal dlscretlzatlon used w1th.the Shnman
'model is- 1nd1cated in the diagram below-

The system of equations may be written,
c

¢

(e

[¢]

)

[p]

s

 ¢4.

u, + .5 ¢2

1, + .5 (65 + ¢4) +'E3

g ‘0  o
~ Yy Ty G5 Py
.&é
‘11,3,.']:'3‘s OLS,'TP3
6‘ 0 g
__'uz;uTz’ %25 P2 __
S1 o
o Ups o1 Ty Py
¢ =0 5

+ ul

.5 (¢2 +4) +7T,

5 (9, b +a,

(p*- pT) + (p*- pT)[ul

(p*- pD) + (p*-pT)[u2

pT +pT [u,

2@ KL

pT +fETf[ﬁH.+ 2(i k)7L

p, =0

p, =0

- 231 k)7 6,1

¥ kjfl 5,1

27

Qe

] =0

5,1 = 0

17
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(112)



N !

-2 i +:§i CP*“'PT) +vQ1:C§;;T§?) =0

208, = 43) + Ty %= pT) + o, GF= PT) = 0

— - (113)
2(¢3 - ¢L.1.) + 0!'3 PT + QL3 PT = 0
- + o, pT T =
2(¢4 o) +a,p +voc4 P 0
cp e Ty e opy F 5@ e T g, =0 /
e, cT —-—co, p + .51 k)1 ¢ ~TT . =0 ,
¢ -co + .5(1 k)7 86 = ' .
.Cp c T3 co, P, 5(1 k) s ‘ ‘02 ’ 0
| -ca i k)"Ye TSS =0
cpkc T, ~-c o, p, + S5(E k) Cp rs o, Q 
p1 o, +,Pl ul = RT1
Py Gy + Py 0y = RT,
e (115)
Py 03 * Py 03 = RT,
P, @y * P” o, = RTL+
p, = .25 pT'+ .75 p% , B, =.25pT + .75 p%
p, = .75 pT + .25 p* , P, = .75 pT + .25 p% FRE
E L : (116)
p, = .75pT s P, =.75pT
3 : ‘ v . 3 .
p, = .25 pT s P, = 25 pT

This set of simultaneous equations is closed. It should be noted
that the static stability of the basic state has only-two distinct
values which we have denoted. - ' '

T

]_"S

[2@,-T) - @e )7 GF pDGE, +3,)]

o I : (117) -
[2T-T) = 2c ) G (o, +a)] -

18



. For a nonﬂtrlylal solution to exist for the system, one . requlres

"vthe determlnant of : theqmatrlx of coeff1c1ents to*yanlsh,

If we set D to stand for the"” determlnant we have v
D(c,q y=0 T S oowe)

in which q stands for the ba31c state parameters. By f1X1ng q s

D becomes a polynomial in' c. Since only neutral waves are expected;
all the roots of D w1ll be real valued To determine.the roots, we

simply evaluate D as el varies over: the range, 0. to ¢ .. - “The. .
choice of CCoax is made on phy81cally reallstlc bases. X :

The analys1s was made more tractable by s1mp11fy1ng the basic
set of equations through the: e11m1natlon ‘of all the variables except
the four geopotentials. and the two pressures, . p* and pl. 1In order to
. carry out the ellmlnatlon,_lt was necessary to assume that ¢ #.0.

The Slmpllfled set “of equatlons may be expressed as,

ﬁ v = VO N

with
e O —I-D—T- _ ZPT —PT 0 F —
- c 13
D = - 27 -7 0. 0 F F
S 11 12
F - A 0 0 F F
1 ) 3
-F  (F -A) 0 0T F
n b , , 5 6
0 (B -F F : -B 0
o “(_ _ P 7 _ 0 Ty
0 B - F F - B 0 F
g (9 ) 10
and B SRR ‘ _ R
b,
v = ¢3
9y
95
p¥*.
pT

19



. | - The symbols used in D are defined by
Fi =‘2Lc2-53 7 fyz.cz 5;
Fq =2¢%5, g= 2P,
5 - (p*- :;ET) = R/c, |
F,=[-3 0 c? 4+ .75 ¢2 (1 -
F3I'= [5, o, ¢+ .25 ’°¢¥2 a-
F, = [~ P, T, 2+ .25 ¢ a-
Foo=[ 52 w, c? + 75 2’ (i_-
Fg = [—1'53’33 c2 + .75 ci_ (1 -
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The value of the determinant was calculated for two, isothermal
basic states (T = 250°K); in one case we used pf =200 mb and in the
other pT = 500 mb; 7P* was 1000 mb .in both cases. By interpolation,
the roots of the determinant were estimated with the results:

Isothermal pT = 200 mb

Isothermal pI = 500 mb

+
¢y +
cé  + 191 m sec !
co + 66 m sec
3 .
c + 53 m sec ¥

V313 m seb—l'r

l N

'3llrm sec™!

I+

1+

134 m sec™?

42 m secf;

I+

1

f-+

21 m sec
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The 1sothetmal, pT 500 mh, case. corresponds,most closely to
the Phillips system and to'-the preyiously evaluated Shuman system
two-layer model. Both c, and c, are. quite close to. the'Values calcu—
lated for the two-layer model: = The wvalues of c,, c, and Ch also
~agree closely with those obtained using Phillips four-layer model.

Again there is a non-negligible dlfference ‘between c, found in the

" Shuman and PhllllpS systems.

9. Summary and Conclusions

It has been determined that the fundamental (or fastest) free
mode admitted in one, two and four layer models based ugon_Phillips or
Shuman's o systems are.sensibly identical (% 310 m sec . The internal
modes in the two layer model based On‘PhllllpS system was found to. be
considerably smaller than that found in the Shuman system (85 vs 130
m-sec l). This distinction carried over to the four layer models but*’
was modified somewhat because the Phillips system value of c, was
increased to 110 m sec ! apparently in reaction to the change in
‘resolution of the basic state static. stability.. The slowest modes ¢
~and ¢, were found to be essentially the same in the Phllllps and Shuman
system four layer models (= 43 and 24 m sec”l). :

The. calculations’ reported herein were based upon 1sothermal bas1c
states and must be used with caution in estimating the free modes in
the general application' of the models to real data.

. Our principal conclus1on is that the Shuman c system s utilization
of a free surface approximation for the "tropopause' has a dynamical
significance for the free gravity modes. The possibility of utilizing
this distinction in the design of semi-implicit integration schemes for
‘the non-linear equations is therefore retalned as" a working hypothes1s
for our subsequent Work ‘ '
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