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1. Introduction

It is well-known that the computational stability of explicit
schemes for numerical integration of the quasi-static equations is
dependent upon the satisfaction of a criterion of the form,

wAt <1 (1)

The parameter, w, represents the frequency of oscillation of a wave
motion admitted by the difference equations. It is seen that (1)
requires the use of a smaller time step when a high frequency oscil-
lation is admitted-by the system of equations.

In connection with our work on the development of semi-implicit
integration methods (1), the need arose for a good estimate of the
frequencies admitted by multi-level quasi-static models. In particular,
we were led to enquire into possible differences in the modes when
alternate formulations of the vertical coordinate were employed.

In this paper, we shall-present the results of analyses of the
free modes admitted in one, two and four layer models based upon the
a-coordinate systems introduced by Phillips (2), and Shuman and
Hovermale (3). The perturbation equations will be developed using an
unspecified a-type coordinate. The specialization to specific co-
ordinates and vertical resolution will then be made, and the analysis
indicated. In the concluding section, the results will be summarized
and their significance evaluated.

2. The Linear Equations in a-Coordinates

The equations presented by Shuman and Hovermale (3) pose the
physical laws which govern the quasi-static atmosphere. The vertical
coordinate, a, may be'chosen as any single-valued, monotonic function
of the vertical geometric coordinate. The definitions of a adopted
by Shuman and Hovermale are quite elaborate and were apparently
designed to allocate the vertical resolution of their numerical model
in a controlled fashion.

In this section, we shall develop a greatly simplified set of
equations from those presented in (3). These simplified equations will
be specialized by definition of a and will then be studied in sub-
sequent sections.

At the outset, we assume that the Earth is an infinite, flat
plane which is not rotating. One may therefore set the map factor to a
constant, unity, and omit the Coriolis terms in Shuman and Hovermale's



equations. We then assume that the atmosphere is free from extraneous
heat sources, is dry and inviscid. The equations then become

a\V+ .V*V+ aVt v vv + + CpeV~r + V = 0 (2)

0 Tir (6) 

aQ + cps aa? = o ;t j 3 (3)

: u p Da : :

S S bt < +v.~(\kV :i} +; (4) 3P}00 0 

DO + \V-Ve + 0 °; 
at ( au

with the thermodynamic relationships and definitions,

;? e = T~- 1
t f : : 000:: :t(6)

: ( p/p )R/Cp c0: .0 : ; :00(7)

pa = RT (8)

For our purpose, the thermodynamic parameters used in (2), (3) and (5)
are inconvenient. One may show that

c OV aVp (9
P

Cp T- T (10)

and that the thermodynamic. equation (5) may be re-expressed

c ; +\V.VT$0+&} = a (t +\ VVp + a V} (1 )
:~~~~a at :? :: 

Whenl(9) and (10)t akefintroduced into (2) and;(3), the latter becomen.

+ +V.V + \ \V : + + Vp + VM = 0: :0000 A: f 0:. ::f: - : P + : ::: : (12)at .~

and.

;- + aap= 0o (13)
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We proceed now to define a basic state which is barotropic and
involves no wind. Letting the basic state variables be denoted by a
superscript bar, we find

=0

O0

:--'pa =RT . (14)

Va - VT=Vp= V= 0

will be sufficient to insure that the basic state is steady.

We now define a perturbation field in each dependent variable
and assume that it does not vary in the y direction. For ease of
notation, the customary prime on the perturbations will be omitted;
all parameters without overbars will be understood to be perturbations.
So, replacing the variables with the sum of a basic state and a pertur-
bation, the equations become

+ a n + a +' a .a_0(15)
at ax ax

0 0 00 050 0 0 Da + a:-+' aa = ° t;;: 000 0 (16).~ ~ o a~ _ :a7~at acr a-+ -E;; fa + p (~~ax + a) = ;(17)
Cp aT -_ ap + a( --a, = 0a

at Dt p Dao c a o-
P

pa + pa = RT (19)

This set of linear equations in six dependent variables is not
closed. It remains for one to define the vertical coordinate, at least
implicitly, in terms of E. A subtle point in the linearization involves
the question of the existence of a perturbation in the a-variable itself.
We have followed the view that no such perturbation is admissible. Once
a coordinate has been selected, it is immutable from the observer's view-
point. Thus, if pressure is selected as the vertical coordinate, one
cannot "observe" a pressure perturbation. On the contrary, one observes
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perturbations in geopotential. In the "inertial" frame, in which a
geometric altitude coordinate is used, the observation in the pressure
coordinate is seen to be distorted. An analogy to the Coriolis acceler-
ation is obvious.

With this point stressed, we may proceed to specialize the linear
equations to various a-systems, and to investigate the free modes admitted
by the equations.

In the case of Phillips definition of a,

a = p/p* = p/p* 0< p< p* (20)

with p* the pressure on the ground, the system of equations becomes,

: aD~~u + a C., + a 0 O (21)
at aDx ax

-+ - p* + p* =0 (22)

Do~~~~DD
-~--~*¥ ( + =o (23)

c : a: *- + -*c ar + = to0 . (24)
pat at :

a p* a + a p* = RT (25)

: R _ -T at : Cr Da- c * 0 f /; (26)
p

Shuman and Hovermale use a number of definitions for a within
different portions of the atmosphere. We shall here consider only a
two-domain case; thus, a is defined by

as = p/pT =p/pT 5 , 0p <p pT (27)

and

T = (pp T)/(p*_pT)

= (p-pT)/(p*-7), pT < p p* (28)

One may imagine (27) to prescribe the vertical coordinate-above the
tropopause and (28) to define a within the troposphere. It is clear that
the equations will have the same form as the Phillips system above the
tropopause, provided that pT replaces p* and oT replaces o. The system
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generated by use of (28) is,

at +. a Xp*_ PT} + a;; AdT + x=0 ( (29)T) + T)(-- =; f+ a (p* - T ; (p*- ) Vo-00 (30) 

3at (P*- pT)3} + ff-i p-}(fau 6]x + 3 = (31)

C DT 2-__ 3 -PT) T
c- 7 aT? ] a ~'(- a P apT) -> Tr pT + Cp ( T 0P at T at P ~~~~~~~~~~~~(32)

oaT(p* pT) + pT + a + T(p*- pT)a + pT = RT (33)

- _T = a T A* T (34)
T ad c

P

Finally, we shall be seeking the free modes admitted by the
system of linear equations. In other words, we shall try to find the
values of c for which solutions of the form

q(x,yat) = q(a) eik(x+ct) (35)

will satisfy the equations. Rather than develop differential equations
for q(a), the equations will be discretized by use of finite difference
approximations of the vertical dependence. In this way, one develops a
set of simultaneous, linear, algebraic equations with c as a parameter.
The requirement that (35) be non-trivial imposes the condition that the
determinant of the System of equations vanish. The determinant will
yield a polymonial in c with the basic state variables entering as
coefficients. The roots of the polymonial (the allowable modes) will be
determined by specifying the basic state.

3. The One-Layer Phillips System

The equations (20) through (26) may be expressed upon introduction

of (35) as,

= p/p* = p/p* 0 p 5p* (36)

c u + a-a p* + q= 0 (37)+ aP* OtP*0 o a (38)
3oa
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c p* + u+ p 3- : )0 (39)

c c T c a p* + c W r = (40)
p p

p* a +p* = RT C41)

--, T --
r a- P* (42)c

P

in which E (i k) 1 F (43)

The discretization-of this system for a one layer model is indicated
in the diagram below,

a=O a=O 0 p 0 =1

o~~~~~~p = ½ pa =2 3 ul ali T1 P1 = 2 P*-

o=.1 _ _ p=p* _=0
= 0

So the equations become,

c u 1 + .5 a P* + .5 1 = 0 (44)

- +1 + P* + a = 0 (45)(45)

c p* +'p* (u + 0)= 0 (46)

c c T1 - c al.5 p* +0=O 0 (47)
p

;.5 p* ai + 5 P* a= RT (48)

We may now eliminate T and ca by.use of (45), (47) and (48) to get

+ l = 1 .K p* (49)

with K =R/c
p

6



U .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Then ] and n2 may be eliminated between (44), (46) and (49) to get

(c2 - (K + 1) RT} p* = 0 (50)

in which we have used

.5 a p* =RT , (51)

Thus, the free modes for the one-layer Phillips model are

c = +((: + 1i) RT1 ) (52)

If T1 = 250°K, one finds

c ± 302 m sec 1

4. One-Layer Shuman System

It isa clear that the Shuman system for defining a is not
appropriate for use in a one-layer model. It is of interest, however,
to examine the result of bounding the atmosphere at a pressure other
than zero. We shall, therefore, consider the system of equations which
result from the assumptions

pT = constant

(53)
pT = o

The diagram below indicates the vertical discretization used in eqs. (28)
through (34), using (53) and (35),

T 0 =01 = pT=, , p = T 0 = p

oT := .5 ___ ~l_, _Tl___
T a5-- -- -0, = ,5 (P + pTP , P = p*

T =0. p p*;p p*
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The equations reduce to,

c -ul + ,5 Y p* 4 ,5 1 = 0 (54)

- + P* + a (P*- ) = 0 (55)

c p* + (p*- pT)[u1 +0] 0 (56)

c c T1 .5 a1 c p* = 0 (57)

.5(p*- pT) a1 + pT a1 + .5 p* c1 = RT1 (58)

One may eliminate oa and T1 among equations (55), (57) and (58) to
obtain

~ ---~ (l - (l - ) E) iai P* (59)

in which
:3(p*.. pT}/(p*+ MT 0 ::(60)

Then u1 and .{i may be eliminated between (54), (56) and (59), yielding:

2 : . 0
(C2 - (p*- pT) ¥ [1- .5 E(1 - )]) p* = 0

or (c 2 - 2 e RT1 [1 - .5(1 - K).E]) p* = 0 (61)

The roots of (61) are,

c = ± (E RT1 [2 - + C K]) ; (62)

If pT = 0, then s = 1 and equation (62):reduces to the result obtained
in the Phillips one-layer model. Some interesting choices of E yield
the following results with K = .287,

c = ±(RT .587)2 , = 1/
C 3 ' g = /3

c (R 1. 952}T E =

C ± (RT 1 l.287)½, :£2 = 1

8 -



Phillips System Two-Layer Model

The diagram below indicates the -vertical discretization to be used:

c=0 C '0: '" 0 b ' u=d'0
2 p

; -- h n */u a2, T2

or =5 ~ p n =n*/9

a = 1

T
1

r , -

4 = 0 p =p*

r 0= 2 (YT T2) - '1 '2p*
2c

P:

We find it convenient to define,

r = p*/p*

W = 6/ik

stem of equations may then be writter

c u + .5 + RT r = 0
1 1 1

c u2 + .5 (42+ 41) + RT2 r = 0

2 c r + (Ul+U 2 ) = 0
2r+(u .+u )0

12
(u12 -u 2 ) - 4w = 0

.75 p- % = 1.5 4 1 - RTlr

.25 p* 2 =.5 2 1) RT2r

cRT1 = C K RTlr - .5 R-r 

cRT2 = C K RT2r- .5 R r 
RT1 = .75 p + RT r
RT 1 = .75 -~W +~ RT 1 r

9

(63)

(64)

(65)

,
n,I-

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

5.

and

The sys

--- l=-9-I.-T.



RT = .25 p* 2 + RT2r (75)
2 2

Elimination of a1';2 and T , T among equations (70) through
(75), yields 1 2

1.5 c 1= c .: RTir- Rr .5 u (76)

.5 c [~2 - ] = c K RT2r - Rr .5 w (77)
2 3. 2

We have assumed that c = 0 is not a root.

One may also eliminate u and u2 among equations (66) through
(69), to get

[2 c2 - (R1 + RT2 )] r- 1- . 5 2 = (78)

[RT -RT 2]r + 4 c W .5 =0 (79)-
1 2 .2

If one next works out the determinant of the coefficients of
equations (76) through (79) and sets it equal to zero, one finds that c
must satisfy the equation,

6 c4 - [3(K + l)(RT1 + RT2) - RT] c2

- Rr [¼(l + K)(RTY - RT2) + RT1 ] = 0 (80)

If F = 0, two of the roots of (80) are found to be zero, the
other two are similar to those for the one-layer model but with

T = (T + T )/2
1 2

For an isothermal basic state,

R_ = -¥~7
Rr = K 2(Rl0; RT2I " 2 

.25

8 KR
= -8K RT: (81)

3

and

=: f: T T T : ::(82)T~ = Y2
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.: 0' ·
Substitution of C81) and (82) into (80), gives. the isothermal relation,

8K
C4 - I RTc + l) +- CRT 2 = 0 C+83

If one uses K;= 2/7, (83) becomes

C4 1 7) RT c2 + (- 6 }(RT)2 : 0 (84

with the roots

~~~~RY: + [Z.3l f jc 331.68 )- ½k
32 ]~~~~~T_ ) 2~~~~~ 28C2; + ( 252 -[. RT;

C2 :=+ ( 2- - RT: = + [.09 RT] 

The larger of these roots is slightly
in the one-layer model. The smaller root is
T = 250°K one gets : 

greater than that obtained
the internal mode., For

c = + 306.- m sec- 1

1I -

c 2 = +± 81.7
m' sec 1

6. The Shuman Two-Layer System

The diagram below indicates the vertical discretization appropriate
to the two-layer model using Shuman's system,

a s
=0C= o 00 f *

aO = ''.5- u2 a2 T
S

2 = p= 0

p ;= .5 pT

Cs = 1 aT = 0S. T
a = 0. z1: =

T : .5 ___ .U1 _. Tl_

=0 : - 0

p = .5 (p* + pT)

p = P*

11

)

)

)

a T = 1



The system of equations 3ay be written

c U + .5C4) + .5p*+pT) 0

c u 2 + ..5(++ P2 ) + 2 .5 pT =0

c (p*- pT) + (p*+,-T)u z = 0

c pT + pT u2 0
2

- + + 1 (p*- pT) + al (P*- pT) =

- (+2- +) 2 P + a2 PT =' 0

c T1 - al .5 (p*- pT) = 0

cT 2 - a2 5 pT =0

.5(p*+ 7) a1 + .5(p*+ pT) ¥z = R

.5 p-T a2 + .5 pT a2 = RT2

One may eliminate al, a2, T1

+ +1 = (p*-pT) + al1

and +2 = +1 + K a2 p

with

_ (p*,--T)/(p*+ pT)

One may also eliminate
(89) to obtain,

: c2 (p*.- pT) - (p_ p-)

and T2 among equations (90) through (95),

£ (K - 1) (p*+ pT) (96)

(97)

(98)

u1 and u2 among equations (86) through

1 ..5(p*+ pT) - .5(p*_ pT) q = 0 (99)

and
(c2- .5 a2 PT) P- '57r+- .5 pT +2 = 0 (loo100)

Finally, + and %2 may be eliminated by use of (96) and (97) in
(99) and (100), to get 

(c2 - c RT1 12 + (K - l)])p* - [c2 + 2RT(K- l)]pT = 0 (101)

12

C86)

C8 7)

(88)

(89)

(90)

(91)

(92)

(93)

-0

TI (94)

(95)



and

C2 - RT2 C~ +l K 2 r 1 - a l}pT

2 rRT --1 + eCK -l)]p* 0 C102)2~~~~~~~~~~~~~~12
in which

r_ a1 / a2 = (T1/T2)( pT/(p*+ pT)) (103)

The determinant of the coefficients of equations (101) and
(102) must vanish, giving rise therefore to a fourth degree polynomial
in c.

If the basic state is specified to be isothermal (T = 250°K) and
the pressures are chosen so that

pT = p* - pT,

then one obtains

= r = 1/3

The roots of the c polynomial are then

c + 308 min sec- 1

c = + 130 m sec

It will be noted that the larger of these roots are.sensibly the
same as those obtained for the Phillips two-layer system. The smaller
roots of the Shuman system are considerably larger than those internal
mode values obtained with the Phillips system.
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7 .The Yonr-Layer Phillips Sys~tes

The vertical discretization used in this case
diagram below 

6=0a = 0

a 3

u_4, T4, a 4

3

; I0: \ uR' T3' aR

C = .50 : 9

u , T 2
2 2 2: X- 0 : - - - - - - - - - - - - --a2 - -

a = .75
1

is. shown in the

4 ' p = 0

r34 3, p = .25 p*

r2 3 ~2' P = .50 p*

r12 f3' p = .75 p*

: 1.00 

The system lof equations2_ .
c u1 + .5 1

c 2+:.5 %

3 2
C u + .5 4.

c u4 + .5 3

= : f 4 3:

Ul = 0 a0 a--> 0 ---;

may be written,

+ p1 P = 0

+ .5 2 + c- p = 02 2
+ .5 + 3 P3 = 0

+ .5 + p = 0
4 4 4

14

0

F=0

a = .25

= 0, p = p*

(104)



+ ~1 .p* + cl .p* = 0

2 + '2 P * + 2 p~3) + a3 p * 0+0 a p * = 0

4) +40 p* + a4 p* = 0

1+I p* [ui +

+ p* [u3 +

+ p* [u4 +
4 ;[30

4(i k) 1 6aI
1 

4(1i k) - 1 (6i1

4(i k)l1 (a2
4(i k)-"6 3]

=-0
-'-'2)] : 0

-a3)]: 0
:0

c c +c (i k-
p i P

c c T - c a P2 + c(i k)-1P 2 22 P
•ccT -ca p~+c(1k Q 1
ccp T -ca p + cp(ik) 1

c c T 4 p-- + c (i k)- 1

Pip 1

P2

3

P4

a1 + p I1 = RT

a2 + P2 2 RT2

e3 + p3 a3 = RT3

a 4 + P4 a4 = RT4

P1

P2

P3

P4

= 7 p*/8

= 5 p*/ 8

= 3 p*/8

= 1 p*/8

[.5r 6]= 0
12 1

[5T112 +.5 F23 %2 = 0
(107)

[.5r a +.5 r ] =0
23 2 34 3

[.5 r34 3 ] = 0

(108)

(109)

15
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4 C¢~ -

4 (42 -

4(¢ -
3

(105)

IC ~p

C~P

C P

(106)

0 �.� *,�.



~:' =4CT~iY-(o~ + ~·*'C. .

li~~~~~~~~p

12 .1 2 2 1 p

: ( T: 23- 0 &2 T3) &0 - Ca.S +F a2 p*// ((2 c ) 0 (.110)23~3 2 3 3

r3 4 -' 4 (T3 - T4) - (4 + c3) p*/(.2 c )
P

£The set of equations just' enumerated may be reduced to a set of four,
homogeneous- equations in the four geopotentials. For a unique, non-
trivial solution to exist, we are led to require the satisfaction of
a "frequency equation" in c. The zeros of the frequency equation
yield the free mode phase speeds, c. Eight values of c were calcu-
lated numerically for an isothermal basic state with a mean temperature
of 250°K.

The results were,

c =+ 308 m sec 1

c2 = + 110 m sec 1
C2

c3 = + 43 m sec 1

c 0 f == + 24 msec 1

4

It will be noted that the fastest phase speed is essentially the
same as that calculated using the one- and two-layer models based on
Phillips a-system. The second mode., c2, is larger than that obtained
with the two-layer model. .This difference is attributable to the
variation in static stability resolution.
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8, :The Shuan System FourLaer ode

The -vertical discretization used with
model is indicated in the diagram below

a=0o

u , T , ca p

0 0 0 00 ¢4 f2;

~2

u, , TI' P1
- 20 _ _ _ _ _ _ _ _ _ _ _

= O Ia =:0 0:

The system of

c u 1 + .5 2

c l2u + .5 (42

c U 3 + .5 (03

C U4 + .5 (. 4

the Shuman four-layer

=0 p=0
s

a .5 p =.5 pT

=7 0, p p
s s T

a = .5, p = .5(p*+ pT)
T

T = 1., p = p*

equations may be written,

+ E 1 P= 0

+ q 3) + l2 P = 03 2 2
+ c4) + p3P= = 0
+ C ) + a4 P4 = 0

c (p*- pT) + (p*- pT)[u1 - 2(i k)' 1 al] = 0

c (p*, pT) + (p*, pT)[u 2 + 2(i k)- 1 l] = 0

c pT + pT[u 3 -2"(ik) 2 ] = 0

c pT +T 7 [u4 + 2(i k)- 1 a2] = 0

17
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(112)

a, = 0: ,



-2 +
2' (2

2(+2 -

2(+3 -
2(34 -

2(p 
4

+ al (p*. pTj + a ¢p* 0 O

+) + a2(p*- pT) + 2 pT) = 0

+4) + a3 pT + a3 pT = 0

45) + a4 pT + a4 pT = 0

Cp cT 1 - c p1 P, + .5(i

c c T2 - c P + .5(i
P 2 2 P2 5

p c T - c a P + .5(i
p 3 33

Cp c T 4 - c a4 p 4 + .5(i

Pl

P2

P3

P4

a + P
1 0 1

a2 + P2

a 3 + p 3

a4
+ P4

:a
1

a2

a3

a4

k)-1

k)-1

k)-1

k) - '

c rT a

p 1

c rsa 
P 2Cp r's' 62

Cp rs ~2

= RT
1

= RT2

= RT3

= RT
4

pT+ .75 p* , p =

pT + .25 p* , 2 

pT _ 
3

pT 
' P4=

.25 T + .75 p-*

.75 pT + .2 5 `p*

.75 pT 

.25 pT 

This set of simultaneous equations is closed. It should be noted
that the static stability of the basic state has only--two distinct
values which we have denoted

:FT = [2(T1- T2) - (2 c ) -(p*_ pT)(al + a2)]17)

Ls= [2(T-) - (2c )- (p) (a + 4)]
3 4 p 3 4P

18

-=0

= 0o

= o

= 0o

(113)

(114)

(115)

Pl = .25

P = .75

p3 = .75

p4 = .25

(116)



For a non-triyial solution to exist for the system, one requires
the determinant iof the matxix of coefficients to -vanish.

If we set D to stand for the determinant, we have

D(c;ji ) '.= 0 (118)

in which qi stands for the basic state parameters. By fixing q.,i
D becomes a polynomial in c. Since only neutral waves are expected,
all the roots of D will be real valued. To determine the roots, we
simply evaluate D as c varies over the range, 0 to c . The
choice of c is madeon physically realistic bases. max

The analysis was made more tractable by simplifying the basic
set of equations through the elimination'of all the variables except
the four geopotentials and the two pressures, p* and pT. In order to
carry out the elimination, it was necessary to assume that c # 0.

The simplified set of equations may be expressed as,

Dv 0

with

0 pT - 2pT 2pT 00 F
13

D= -2 P -P 0 0 F F

11 12

F -A 0 0 F F
1 2 3

-F (F -A) 0 0 F F
4 4 5 6

O0 0(B-F) F -B 0 F87 7 8

0 B -F (F - B) 0 F
9 9 10

and

v2

94 ·
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Te sybos used in D are died by

Tke sy~nbols used in D are defined hy

= 2 c2 P-
Pi

= 2 c2 p
2

= [ P* 1 lT

G -p

: [Pi a1

= [p 2 a2

= [ P2 O2

= [- p3 T3

= [- p4 a4

1= [4 c 2 ' -

c2 +

C2 +

c2 +

c2 +

c2 +

c2 +

5P(

F7 = 2 c2 p3

F = 2 C2 p
9 4

K R/cp

.75 c2 (1- K)

.25 C2 (1 - K)

.25 c2 (1 - K)

.75 c 2 ' (1 - K)

.75 c2 (1 - K)

.25 c2 (1 - K)

3 a1 + a2
) ]

A = RT P/16
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The value of the determinant was calculated for two, isothermal
basic states (T= 250°K); in one case we used pT = 200 mb and in the
other pT =500 mb; p* was 1000 mb in both cases. By interpolation,
the roots of the determinant were estimated with the results:
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Isothermal pT = 200 mb Isothermal pT = 500 mb

± 313 m sec- l 311 m sec 1

± 191 m sec 1 ± 134 m sec-1

± 66 m sec 1 ± 42 m sec - -

± 53 m sec-1 ± 21 m sec- 1



The isothermal, pT = 500 mh, case corresponds most closely to
the Phillips system and to the preyiousaly evaluated Siuman system
two-layer model. Both c2 and c2 are quite close to the values calcu-
lated for the two-layer model. The values of cl, c3 and c also
agree closely with those obtained using Phillips four-layer model.
Again there is a non-negligible difference between c2 found in the
Shuman and Phillips systems.

9. Summary and Conclusions

It has been determined that the fundamental (or fastest) free
mode admitted in one, two and four layer models based upon Phillips or
Shuman's a systems are sensibly identical (. 310 m sec- ). The internal
modes in the two layer model based on Phillips system was found to be
considerably smaller than that found in the Shuman system (85 vs 130
m sec-). This distinction carried over to the four layer models but
was modified somewhat because the Phillips system value of c2 was
increased to 110 m sec apparently in reaction to the change in
resolution of the basic state static stability. The slowest modes c
and C4 were found to be essentially the same in the Phillips and Shuman
system four layer models (= 43 and 24 m sec-1).

The calculations reportedherein were based upon isothermal basic
states and must be used with caution in estimating the free modes in
the general application of the models to real data.

Our principal conclusion is that the Shuman a systemts utilization
of a free surface approximation for the "tropopause" has a dynamical
significance for the free gravity modes. The possibility of utilizing
this distinction in the design of semi-implicit integration schemes for
the non-linear equations is therefore retained as a working hypothesis
for our subsequent work.
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