
0.

U.S. DEPARTMENT OF COMMERCE
ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION

WEATHER BUREAU
NATIONAL METEOROLOGICAL CENTER

APRIL 1970

THE RELATIONSHIP OF THE FROUDE NUMBER

TO NUMERICAL STABILITY OF THE GRAVITY WAVE EQUATIONS

OFFICE NOTE 42

R. D. McPherson

Development Division



0 ~ ~

The Relationship of the Froude Number
to Numerical Stability of the Gravity Wave Equations

By R. D. McPherson

1. Introduction

In the course of a continuing series of numerical experiments con-
cerning the computational stability of the gravity wave equations, in one
space dimension,

au u Dau + a_ = 0 (1)
at ax ax

a_ + u 2_ + au= 0 (2)
at ax ax

and an auxiliary equation in the v-component of motion

av + u av = (3)

at ax

evidence has been obtained that the onset of non-linear instability in (3)
is somehow related to the initial distribution of the u velocity compon-
ent. In particular, using the semi-momentum formulation for the spatial
derivatives and the 'leapfrog' method for time differences, and initial
velocity distributions given by

'L2-
/2 2 7rmj Ax

u. = A ' sin 2 j(4)
J m=0 LAx

LI 
A ~~2 rmj Axv. i A ) cos 2wmE ,

3 m=0 LAx

instability was encountered at 85 days with A = 8.5, while with A = 2.18
the computations were quite well behaved at the nominal cutoff of 347 days.
Here, instability is defined as occurring when the kinetic energy associated
with the rotational component of the wind (v-component) exceeds its initial
value by one order of magnitude.

In order to examine this behavior more carefully, eqns. (1-3) were
non-dimensionalized, and a series of numerical calculations carried out as
a function of the pertinent non-dimensional number. In this case, that
number is the Froude number, defined as Fr - U/1 X, where U is a charac-
teristic fluid velocity. 
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2. Non-Dimensionalization of the Governing Equations

We define the independent non-dimensional variables

to = t ( Cg/LAx ) (6)

and

x' = X/LAx (7)

where C = gK, H is the mean depth of the fluid, and L is the
interval of periodicity of the initial data. We also require the following
non-dimensional dependent variables:

u' = u/u

v- = v/U (8)

'= %/gH ,

where U is a constant. With these definitions, (1) (3) become

Du' + U U' Du' + C Dv = 0 (9)
at, - Cg ax, ax-

a' + U ( uo au ) = 0 (10)

av- + U u =0. (11)
at' C ax'

g

Introducing the definition of the Froude number, and suppressing the prime
notation with the understanding that all parameters are dimensionless, (9)-
(11) become

Du + Fr u au F- 1F = O (12)a-t xr x r ax

+ Fr (ua + a ) = (13)
at ax axx

a + Fr u v = O. (14)at ax

This system is transferred to .a system of difference equations by use of
the semi-momentum formulation for spatial derivatives and the leapfrog
scheme for temporal differences:

ut + Fr 'ux + F (15) t r r
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x x
+ F (r ' + u =0 (16)

x~~

vt + Fr Xv = 0 (17)t r x

This system of equations was integrated over a domain in which L = 24,
Ax (dimensional) = 381 km, At (dimensional) = 600 sec., and Ho = 7620 m.
These values were considered invariant in all experiments, and only Fr was
varied; this means that only the characteristic wind speed was changed in
each experiment. The initial velocity distribution was therefore computed
from (4) and (5) where A = (Fr)(C g): as the Froude number increases, the
magnitude of the winds increases, and the non-linear terms in the momentum
equations (15) and (17) become relatively more important.

3. BoundaryConditions

It became apparent during the course of these and other one-dimensional
numerical experiments that the specification of boundary conditions is very
important to the success of the experiment. In the experiments reported
here, it is assumed that there exist walls between the ultimate and penulti-
mate grid points at either extremity of the lattice, as in the schematic:

wall wall

" ~ I I I -- -1 - : l !
I I I

1 1 2 3 4 5 22 23 24 25 26

grid point i +

The appropriate boundary conditions are antisymmetry with respect to the u-
component of velocity, and symmetry with respect to the v-component and the
height field:

Ux V = h = 0 i 1, 251 (18)

In particular:

-, U =--U
uv = U2 u26 = 25

V1 = V2 ' V26 = V25 (19)

h h h ,h
1 2 26 25

4. Results

Integrations were carried out initially for F = .05, .04, .03, .025,
.02, .015, and .01. These correspond to an amplitude of the initial wind

field of approximately 14, 11, 8, 7, 5.5, 4, and 3 m sec - 1 respectively.
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The results are displayed in Figure 1, which is a plot of the natural
logarithm of RMSvorticity in ordinate against time in days in abscissa.
The solid lines are for the above values of the Froude number.

It will be observed that the smallest value of Fr used yielded no
growth in root-mean-square vorticity over 347 days, the terminus of the
integration. On the other hand, with Fr = .05, rapid growth began at
about 30 days, indicating the onset of instability. The intermediate
values of Fr that were used showed an earlier onset of instability with
increasing Froude number. This appears to indicate strongly that the onset
of non-linear instability is closely related to the initial conditions.

However, this is not an unambiguous result. When other values of Fr
were used (Fr = .027, .032, .037, 042), the results indicated that there
is not a one-to-one relationship between the Froude number and the onset
of instability. The dashed line gives the RMS vorticity for Fr = .027;
the solution is apparently less badly behaved than that for Fr = .025.

Finally, an attempt was made to stabilize the calculations, in line
with the Robert, Shuman, Gerrity theory. A simple filter was placed on the
advecting coefficient in the v-equation, so that it becomes

-t - x x
vt + Fr u* VX (20)

1
where u* = ( un + un 1 ). The result, for Fr = .04, is shown as the
dashed line in Figure 2, whereas the solid line represents the unstabilized
result extracted from Figure 1. The simple filter clearly has stabilized
the solution.
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